Skip to main content
Log in

Hepatitis B virus regulation of Raf1 promoter activity through activation of transcription factor AP-2α

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The X protein of hepatitis B virus (HBx) is one of the important factors in the development of hepatocellular carcinoma. Raf1 kinase is a central component of many signaling pathways that are involved in normal cell growth and oncogenic transformation. We previously demonstrated that hepatitis B virus regulates Raf1 expression in HepG2.2.15 cells by enhancing its promoter activity and that HBx and HBs might play an important role in this process. However, the underlying molecular mechanisms remain unclear. In this study, we show that nucleotides −209 to −133 of the Raf1 promoter sequence constitute the core region where hepatitis B virus is regulated. This regulation was found to require the involvement of cis-regulatory element AP-2α. We further demonstrated that AP-2α expression was higher in HepG2.2.15 cells (HBV-expressing cells) than in HepG2 cells in vitro. Silencing AP-2α expression by siRNA significantly inhibited the Raf1 promoter activity in HepG2.2.15 cells. These findings indicated that HBV regulates Raf1 promoter activity, possibly through AP-2α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Halaban R (1994) Signal transduction in normal and malignant melant melanocytes. Pigment Cell Res 7(2):89–95

    Article  PubMed  CAS  Google Scholar 

  2. Yip-Schneider MT, Klein PJ, Wentz SC, Zeni A, Menze A, Schmidt CM (2009) Resistance to mitogen-activated protein kinase kinase (MEK) inhibitors correlates with up-regulation of the MEK/extracellular signal-regulated kinase pathway in hepatocellular carcinoma cells. J Pharmacol Exp Ther 329(3):1063–1070

    Article  PubMed  CAS  Google Scholar 

  3. Eccles SA (2004) Parallels in invasion and angiogenesis provide pivotal points for therapeutic intervention. Int J Dev Bio 48(5–6):583–598

    Article  CAS  Google Scholar 

  4. Kasid U, Dritschilo A (2003) RAF antisense oligonucleotide as a tumor radiosensitizer. Oncogene 22(37):5876–5884

    Article  PubMed  CAS  Google Scholar 

  5. Ito Y, Sasaki Y, Horimoto M, Wada S, Tanaka Y, Kasahara A, Ueki T, Hirano T, Yamamoto H, Fujimoto J, Okamoto E, Hayashi N, Hori M (1998) Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology 27(4):951–958

    Article  PubMed  CAS  Google Scholar 

  6. Schmidt CM, McKillop IH, Cahill PA, Sitzmann JV (1997) Increased MAPK expression and activity in primary human hepatocellular carcinoma. Biochem Biophys Res Commun 236(1):54–58

    Article  PubMed  CAS  Google Scholar 

  7. Kalkuhl A, Troppmair J, Buchmann A, Stinchcombe S, Buenemann CL, Rapp UR, Kaestner K, Schwarz M (1998) p21Ras downstream effectors are increased in activity or expression in mouse liver tumors but do not differ between ras-mutated and ras-wild-type lesions. Hepatology 27:1081–1088

    Article  PubMed  CAS  Google Scholar 

  8. Tian YY, Hu Y, Wang ZC, Chen K, Zhang L, Wang LY, Ren M, Huang AL, Tang H (2011) Hepatitis B virus regulates Raf1 expression in HepG2.2.15 cells by enhancing its promoter activity. Arch Virol 156:869–874

    Article  PubMed  CAS  Google Scholar 

  9. Chen J, Siddiqui A (2007) Hepatitis B virus X protein stimulates the mitochondrial translocation of Raf-1 via oxidative stress. J Virol 81(12):6757–6760

    Article  PubMed  CAS  Google Scholar 

  10. Calvisi DF, Ladu S, Gorden A et al (2006) Ubiquitous activation of Rasand Jak/Stat pathways in human HCC. Gastroenterology 130(4):1117–1128

    Article  PubMed  CAS  Google Scholar 

  11. Calvisi DF, Ladu S, Gorden A et al (2007) Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 117:2713–2722

    Article  PubMed  CAS  Google Scholar 

  12. Zhang XY, Zhang EJ, Ma ZY, Pei RJ, Jiang M, Schlaak Joerg F, Michael Roggendorf LuMJ (2011) Modulation of hepatitis B virus replication and hepatocyte differentiation by microRNA-1. Hepatology 53(5):1476–1485

    Article  PubMed  CAS  Google Scholar 

  13. Zhou Y, Wang S, Ma JW, Zhang L, Zhu HF, Lei P, Yang ZS, Zhang B, Yao XX, Shi C, Sun LF, Wu XW, Ning Q, Shen GX, Huang B (2010) Hepatitis B virus protein X-induced expression of the CXC chemokine IP-10 is mediated through activation of NF-κB and increases migration of leukocytes. J Biol Chem 285(16):12159–12168

    Article  PubMed  CAS  Google Scholar 

  14. Keng VW, Tschida BR, Bell JB, Largaespada DA (2011) Modeling hepatitis B virus X–induced hepatocellular carcinoma in mice with the sleeping beauty transposon system. Hepatology 53(3):781–790

    Article  PubMed  CAS  Google Scholar 

  15. Tarn C, Lee S, Hu Y, Ashendel C, Andrisani OM (2001) Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. J Biol Chem 276(37):34671–34680

    Article  PubMed  CAS  Google Scholar 

  16. Zhang L, Cai XF, Chen K, Wang ZC, Wang LY, Ren M, Huang AL, Tang H (2011) Hepatitis B virus protein up-regulated HLJ1 expression via the transcription factor YY1 in human hepatocarcinoma cells. Virus Res 157:76–81

    Article  PubMed  CAS  Google Scholar 

  17. Liu QY, Chen JW, Liu L, Zhang J, Wang DF, Ma L, He YM, Liu YL, Liu ZS, Wu JG (2011) The X protein of hepatitis B virus inhibits apoptosis in hepatoma cells through enhancing the methionine adenosyltransferase 2A gene expression and reducing S-adenosylmethionine production. J Biol Chem 286(19):17168–17180

    Article  PubMed  CAS  Google Scholar 

  18. Jun HK, Hyune MR (2002) Activation of the human transforming growth factor alpha (TGF-α) gene by the hepatitis B viral X protein (HBx) through AP-2 sites. Mol Cell Biol 231:155–161

    Google Scholar 

  19. Seto E, Mitchell PJ, Yen TS (1990) Transactivation by the hepatitis B virus X protein depends on AP-2 and other transcription factors. Nature 344:72–74

    Article  PubMed  CAS  Google Scholar 

  20. Maguire HF, Hoeffler JP, Siddiqui A (1991) HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science 252(5007):842–844

    Article  PubMed  CAS  Google Scholar 

  21. Lu SC, Mato JM (2005) Role of methionine adenosyltransferase and S-adenosylmethionine in alcohol associated liver cancer. Alcohol 35:227–234

    Article  PubMed  CAS  Google Scholar 

  22. Rajash P, Henry S, Chen JL, Hemant KP (2010) The CCAAT box binding transcription factor, nuclear factor-Y (NF-Y) regulates transcription of human aldo-keto reductase 1C1 (AKR1C1) gene. Gene 459:11–23

    Article  Google Scholar 

  23. Alexander SK, Ulrich L, Ludwig W, Birgit L, Peter HH (1993) Hepatitis B Virus transactivator HBx uses a tumor promoter signaling pathway. Nature 361:742–745

    Article  Google Scholar 

  24. Marriott SJ, Lee TH, Slagle BL, Butel JS (1996) Activation of the HTLV-I long terminal repeat by the hepatitis B virus X protein. Virology 224:206–213

    Article  PubMed  CAS  Google Scholar 

  25. Kannan P, Buettner R, Chiao PJ, Yim SO, Sarkiss M, Tainsky MA (1994) N-ras oncogene causes AP-2 transcriptional self-interference, which leads to transformation. Genes Dev 8:1258–1269

    Article  PubMed  CAS  Google Scholar 

  26. Narendra W, Kumaravel S (2003) Cell cycle arrest and apoptosis induction by activator protein 2α (AP-2α) and the role of p53 and p21WAF1/CIP1 in AP-2α mediated growth inhibition. J Biol Chem 278(52):52093–520101

    Article  Google Scholar 

  27. Bar-Eli M (1999) Role of AP-2 in tumor growth and metastasis of human melanoma. Cancer Metastasis Rev 18:377–385

    Article  PubMed  CAS  Google Scholar 

  28. Leslie MC, Bar-Eli M (2005) Regulation of gene expression in melanoma: new approaches for treatment. J Cell Biochem 94:25–38

    Article  PubMed  CAS  Google Scholar 

  29. Narendra W, Chandrashekhar GR, Kumaravel S (2005) Activator protein 2α status determines the chemosensitivity of cancer cells: implications in cancer chemotherapy. Cancer Res 65(19):8628–8634

    Article  Google Scholar 

  30. Heimberger AB, McGary EC, Suki D, Ruiz M, Wang H, Fuller GN, Bar-Eli M (2005) Loss of the AP-2α transcription factor is associated with the grade of human gliomas. Clin Cancer Res 11:267–272

    Article  PubMed  CAS  Google Scholar 

  31. Vladislava OM, Andrey SD, Maya Z (2010) CREB inhibits AP-2α expression to regulate the malignant phenotype of melanoma. PLoS One 5:e12452

    Article  Google Scholar 

  32. Orso F, Jäger R, Calogero RA, Schorle H, Sismondi P, De Bortoli M, Taverna D (2009) AP-2α regulates migration of GN-11 neurons via a specific genetic programme involving the Axl receptor tyrosine kinase. BMC Biol 7:25

    Article  PubMed  Google Scholar 

  33. Orso F, Penna E, Cimino D, Astanina E, Maione F, Valdembri D, Giraudo E, Serini G, Sismondi P, De Bortoli M, Taverna D (2008) AP-2α and AP-2γ regulate tumor progression via specific genetic programs. FASEB J 22:2702–2714

    Article  PubMed  CAS  Google Scholar 

  34. Park MJ, Kwak HJ, Lee HC, Yoo DH, Park IC, Kim MS, Lee SH, Rhee CH, Hong SI (2007) Nerve growth factor induces endothelial cell invasion and cord formation by promoting matrix metalloproteinase-2 expression through the phosphatidylinositol 3-kinase/Akt signaling pathway and AP-2 transcription factor. J Biol Chem 282:30485–30496

    Article  PubMed  CAS  Google Scholar 

  35. Bosher JM, Williams T, Hurst HC (1995) The developmentally regulated transcription factor AP-2 is involved in c-erbB-2 overexpression in human mammary carcinoma. Proc Natl Acad Sci USA 92:744–747

    Article  PubMed  CAS  Google Scholar 

  36. Gilbertson RJ, Perry RH, Kelly PJ, Pearson AD, Lunec J (1997) Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Res 57:3272–3280

    PubMed  CAS  Google Scholar 

  37. Bennett KL, Romigh T, Eng C (2009) AP-2 induces epigenetic silencing of tumor suppressive genes and microsatellite instability in head and neck squamous cell carcinoma. PLoS One 4:e6931

    Article  PubMed  Google Scholar 

  38. Biadasiewicz K, Sonderegger S, Haslinger P, Haider S, Saleh L, Fiala C, Pollheimer J, Knöfler M (2011) Transcription factor AP-2 promotes EGF-dependent invasion of human trophoblast. Endocrinology 152(4):1458–1469

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Nature Science Foundation of China (30771924) and Natural Science Foundation Project of CQ CSTC (2010BB5359). We thank Prof. Limin Chen of the Toronto General Research Institute, University of Toronto, for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Tang.

Additional information

J. Qu and J. Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, J., Li, J., Chen, K. et al. Hepatitis B virus regulation of Raf1 promoter activity through activation of transcription factor AP-2α. Arch Virol 158, 887–894 (2013). https://doi.org/10.1007/s00705-012-1561-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1561-y

Keywords

Navigation