Skip to main content
Log in

Complete genomic sequence of virulent Cronobacter sakazakii phage ESSI-2 isolated from swine feces

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A newly identified virulent Cronobacter sakazakii phage, ESSI-2, was isolated from fecal samples from swine. The morphological characteristics evident under a transmission electron microscope indicated that phage ESSI-2 belonged to the family Myoviridae. The genome of phage ESSI-2 comprised a double-stranded DNA of 28,765 bp with a G+C content of 55.17%. Bioinformatic analysis of the phage genome identified 36 putative open reading frames (ORFs). The genome of phage ESSI-2 was not significantly similar to that of a previously reported bacteriophage of the members of Enterobacteriaceae. A lysogeny module was found within the genome of this virulent phage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ackermann HW (2003) Bacteriophage observations and evolution. Res Microbiol 154:245–251

    Article  PubMed  CAS  Google Scholar 

  2. Agostoni C, Axelsson I, Goulet O, Koletzko B, Michaelsen KF, Puntis JWL, Rigo J, Shamir R, Szajewski H, Turck D, Vandenplas Y, Weaver LT (2004) Preparation and handling of powdered infant formula: a commentary by the ESPGHAN Committee on nutrition. J Pediatr Gastroenterol Nutr 39:320–322

    Article  PubMed  CAS  Google Scholar 

  3. Biering G, Karlsson S, Clark NC, Jonsdottir KE, Ludvigsson P, Steingrimsson O (1989) Three cases of neonatal meningitis caused by Enterobacter sakazakii in powdered milk. J Clin Microbiol 27:2054–2056

    PubMed  CAS  Google Scholar 

  4. Carlton RM, Noordman WH, Biswas B, de Meester ED, Loessner MJ (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatics analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 43:301–312

    Article  PubMed  CAS  Google Scholar 

  5. Ellis DE, Whitman PA, Marshall RT (1973) Effects of homologous bacteriophage on growth of Pseudomonas fragi WY in milk. Appl Microbiol 25:24–25

    PubMed  CAS  Google Scholar 

  6. Farber JM, Forsythe SJ (2008) Enterobacter sakazakii. ASM Press Inc, Washington, USA

    Google Scholar 

  7. Farmer JJ III, Asbury MA, Hickman FW, Brenner DJ (1980) The Enterobacteriaceae Study Group (USA): Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int J Syst Bacteriol 30:569–584

    Article  Google Scholar 

  8. Ford ME, Sarkis GJ, Belanger AE, Hendrix RW, Hatfull GF (1998) Genome structure of mycobacteriophage D29: implications for phage evolution. J Mol Biol 279:143–164

    Article  PubMed  CAS  Google Scholar 

  9. Friedemann M (2007) Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol 116:1–10

    Article  PubMed  CAS  Google Scholar 

  10. Goode D, Allen VM, Barrow PA (2003) Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 69:5032–5036

    Article  PubMed  CAS  Google Scholar 

  11. Greer GG (2005) Bacteriophage control of foodborne bacteria. J Food Protect 68:1102–1011

    Google Scholar 

  12. Gründling A, Manson MD, Young R (2001) Holins kill without warning. Proc Natl Acad Sci USA 98:9348–9352

    Article  PubMed  Google Scholar 

  13. Hudson JA, Billington C, Carey-Smith G, Greening G (2005) Bacteriophages as biocontrol agents in food. J Food Protect 68:426–437

    CAS  Google Scholar 

  14. Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, Stephan R, Joosten H (2008) Cronobacter gen.nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov. comb. nov., C. malonaticus sp. nov., C. turicensis sp. nov., C. muytjensii sp. nov., C. dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, C. dublinensis sp. nov. subsp. dublinensis subsp. nov., C. dublinensis sp. nov. subsp. lausannensis subsp. nov., and C. dublinensis sp. nov. subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol 58:1442–1447

    Article  PubMed  CAS  Google Scholar 

  15. Izard D, Richard C, Leclerc H (1983) DNA relatedness between Enterobacter sakazakii and other members of the genus Enterobacter. Ann Microbiol 134A:241–245

    CAS  Google Scholar 

  16. Kim KP, Klumpp J, Loessner MJ (2007) Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int J Food Microbiol 115:195–203

    Article  PubMed  CAS  Google Scholar 

  17. Labrie S, Moineau S (2002) Complete genomic sequence of bacteriophage ul36: demonstration of phage heterogeneity within the P335 quasi-species of lactococcal phages. Virology 296:308–320

    Article  PubMed  CAS  Google Scholar 

  18. Lai KK (2001) Enterobacter sakazakii infections among neonates, infants, children, and adults. Case reports and a review of the literature. Medicine 80:113–122

    Article  PubMed  CAS  Google Scholar 

  19. Leverentz B, Conway WS, Alavidze Z, Janisiewicz WJ, Fuchs Y, Camp MJ, Chighladze E, Sulakvelidze A (2001) Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J Food Protect 64:1116–1121

    CAS  Google Scholar 

  20. Lévesque C, Duplessis M, Labonté J, Labrie S, Fremaux C, Tremblay D, Moineau S (2005) Genomic organization and molecular analysis of the virulent 2972 infecting an exopolysaccharide-producing Streptococcus thermophilus strain. Appl Environ Microbiol 71:4057–4068

    Article  PubMed  Google Scholar 

  21. Lin LC, Beuchat LR (2007) Survival of Enterobacter sakazakii in infant cereal as affected by composition, water activity, and temperature. Food Microbiol 24:767–777

    Article  PubMed  Google Scholar 

  22. Lucchini S, Desiere F, Brüssow H (1999) The genetic relationship between virulent and temperate Streptococcus thermophilus bacteriophages: whole genome comparison of cos-site phages Sfi19 and Sfi21. Virology 260:232–243

    Article  PubMed  CAS  Google Scholar 

  23. Manfioletti G, Schneider C (1988) A new and fast method for preparing high quality lambda DNA suitable for sequencing. Nucleic Acids Res 16:2873–2884

    Article  PubMed  CAS  Google Scholar 

  24. Moore SD, Prevelige PE Jr (2002) DNA packaging: a new class of molecular motors. Curr Biol 12:R96–R98

    Article  PubMed  CAS  Google Scholar 

  25. Nazarowec-White M, Faber JM (1997) Enterobacter sakazakii: a review. Int J Food Microbiol 34:103–113

    Article  PubMed  CAS  Google Scholar 

  26. Nazarowec-White M, Farber JM (1997) Thermal resistance of Enterobacter sakazakii in reconstituted dried-infant formula. Lett Appl Microbiol 24:9–13

    Article  PubMed  CAS  Google Scholar 

  27. Nunes-Düby SE, Kwon HJ, Tirumalai RS, Ellenberger T, Landy A (1998) Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26:391–406

    Article  PubMed  Google Scholar 

  28. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  29. Rao DN, Saha S, Krishnamurthy V (2000) ATP-dependent restriction enzymes. Prog Nucleic Acid Res Mol Biol 64:1–63

    Article  PubMed  CAS  Google Scholar 

  30. Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    Article  PubMed  CAS  Google Scholar 

  31. Suthereland IW, Hughes KA, Skillman LC, Tait K (2004) The interaction of phage and biofilms. FEMS Microbiol Lett 232:1–6

    Article  PubMed  Google Scholar 

  32. Trotter M, McAuliffe O, Callanan M, Edwards R, Fitzgerald GF, Coffey A, Ross RP (2006) Genome analysis of the obligately lytic bacteriophage 4268 of Lactococcus lactis provides insight into its adaptable nature. Gene 366:189–199

    Article  PubMed  CAS  Google Scholar 

  33. Ulitzur S, Kuhn J (2000) Construction of lux bacteriophages and the determination of specific bacteria and their antibiotic sensitivities. Methods Enzymol 305:543–557

    Article  PubMed  CAS  Google Scholar 

  34. Wood WB, Conley MP, Lyle HL, Dickson RC (1978) Attachment of tail fibers in bacteriophage T4 assembly. J Biol Chem 253:2437–2445

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported financially by Korea Institute of Planning and Evolution for Biotechnology of Food, Agriculture, Forestry and Fisheries, funded by the Korean Government (108147-02-1-SB010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyo-Ihl Chang or Jong-Hyun Park.

Additional information

Hyo-Ihl Chang and Jong-Hyun Park contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YD., Chang, HI. & Park, JH. Complete genomic sequence of virulent Cronobacter sakazakii phage ESSI-2 isolated from swine feces. Arch Virol 156, 721–724 (2011). https://doi.org/10.1007/s00705-011-0934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-0934-y

Keywords

Navigation