Skip to main content
Log in

Layered vanadium(IV) disulfide nanosheets as a peroxidase-like nanozyme for colorimetric detection of glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors have discovered that vanadium disulfide (VS2) nanosheets, synthesized by a hydrothermal method, exert stable peroxidase-like activity. The catalytic activity, with H2O2 as a cosubstrate, follows Michaelis-Menten kinetics and varies with temperature, pH value and H2O2 concentration. Two-dimensional VS2 sheets acting as peroxidase (POx) mimics can replace horseradish peroxidase due to their availability, robustness, and reusability. The POx-like activity of VS2 sheets was exploited to design a colorimetric glucose assay by using 3,3′,5,5′-tetramethylbenzidine as a substrate and by working at an analytical wavelength of 652 nm. The assay covers the 5 to 250 μM glucose concentration range with a 1.5 μM detection limit. It was applied to the analysis of glucose in fruit juice. In our perception, the peroxidase-like nanozyme out of the family of transition metal dichalcogenides presented here has a wide scope in that it may stimulate promising biocatalytic applications in biotechnology and analytical chemistry.

Layered VS2 nanosheets were prepared via hydrothermal synthesis and are shown to exert superior peroxidase-mimicking activity. Using these POx nano-mimics, a sensitive colorimetric assay for glucose was developed and applied to fruit juice analysis. This work unlocks the access of VS2 to biocatalysis and bioassays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351

    Article  CAS  Google Scholar 

  2. Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105

    Article  CAS  Google Scholar 

  3. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    Article  CAS  Google Scholar 

  4. Huang L, Zhang W, Chen K, Zhu W, Liu X, Wang R, Zhang X, Hu N, Suo Y, Wang J (2017) Facet-selective response of trigger molecule to CeO2 {110} for up-regulating oxidase-like activity. Chem Eng J 330:746–752

    Article  CAS  Google Scholar 

  5. Guo Y, Deng L, Li J, Guo S, Wang E, Dong S (2011) Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5(2):1282–1290

    Article  CAS  Google Scholar 

  6. Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210

    Article  CAS  Google Scholar 

  7. Vázquez-González M, Liao W-C, Cazelles R, Wang S, Yu X, Gutkin V, Willner I (2017) Mimicking horseradish peroxidase functions using Cu2+-modified carbon nitride nanoparticles or Cu2+-modified carbon dots as heterogeneous catalysts. ACS Nano 11(3):3247–3253

    Article  Google Scholar 

  8. Zhu C, Du D, Lin Y (2017) Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens Bioelectron 89:43–55

    Article  CAS  Google Scholar 

  9. Zhang W, Shi S, Wang Y, Yu S, Zhu W, Zhang X, Zhang D, Yang B, Wang X, Wang J (2016) Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy. Nano 8(22):11642–11648

    CAS  Google Scholar 

  10. Guo Y, Deng H, Sun X, Li X, Zhao J, Wu J, Chu W, Zhang S, Pan H, Zheng X (2017) Modulation of metal and insulator states in 2D ferromagnetic VS2 by van der Waals interaction engineering. Adv Mater 29(29):1700715-n/a

    Article  Google Scholar 

  11. Yuan J, Wu J, Hardy WJ, Loya P, Lou M, Yang Y, Najmaei S, Jiang M, Qin F, Keyshar K (2015) Facile synthesis of single crystal vanadium disulfide nanosheets by chemical vapor deposition for efficient hydrogen evolution reaction. Adv Mater 27(37):5605–5609

    Article  CAS  Google Scholar 

  12. Feng J, Sun X, Wu C, Peng L, Lin C, Hu S, Yang J, Xie Y (2011) Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J Am Chem Soc 133(44):17832–17838

    Article  CAS  Google Scholar 

  13. Messerschmidt A, Prade L, Wever R (1997) Implications for the catalytic mechanism of the vanadium-containing enzyme chloroperoxidase from the fungus Curvularia inaequalis by X-ray structures of the native and peroxide form. Biol Chem 378(3–4):309–315

    CAS  Google Scholar 

  14. Plat H, Krenn BE, Wever R (1987) The bromoperoxidase from the lichen Xanthoria Parietina is a novel vanadium enzyme. Biochem J 248(1):277–279

    Article  CAS  Google Scholar 

  15. Robson RL, Eady RR, Richardson TH, Miller RW, Hawkins M, Postgate JR (1986) The alternative nitrogenase of Azotobacter Chroococcum is a vanadium enzyme. Nature 322(6077):388–390

    Article  CAS  Google Scholar 

  16. Inzucchi S, Bergenstal R, Fonseca V, Gregg E, Mayer-Davis B, Spollett G, Wender R, Amer Diabet A (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33:S62–S69

    Article  Google Scholar 

  17. Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R (2015) Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 14(1):45–57

    Article  CAS  Google Scholar 

  18. Sanz V, de Marcos S, Castillo JR, Galbán J (2005) Application of molecular absorption properties of horseradish peroxidase for self-indicating enzymatic interactions and analytical methods. J Am Chem Soc 127(3):1038–1048

    Article  CAS  Google Scholar 

  19. Qu Y, Shao M, Shao Y, Yang M, Xu J, Kwok CT, Shi X, Lu Z, Pan H (2017) Ultra-high electrocatalytic activity of VS2 nanoflowers for efficient hydrogen evolution reaction. J Mater Chem A 5(29):15080–15086

    Article  CAS  Google Scholar 

  20. Zhang W, Wang Y, Zhang D, Yu S, Zhu W, Wang J, Zheng F, Wang S, Wang J (2015) A one-step approach to the large-scale synthesis of functionalized MoS2 nanosheets by ionic liquid assisted grinding. Nano 7(22):10210–10217

    CAS  Google Scholar 

  21. Yin W, Yu J, Lv F, Yan L, Zheng LR, Gu Z, Zhao Y (2016) Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10(12):11000–11011

    Article  CAS  Google Scholar 

  22. Shuai H-L, Huang K-J, Chen Y-X (2016) A layered tungsten disulfide/acetylene black composite based DNA biosensing platform coupled with hybridization chain reaction for signal amplification. J Mater Chem B 4(6):1186–1196

    Article  CAS  Google Scholar 

  23. Harbour JR, Issler SL (1982) Involvement of the azide radical in the quenching of singlet oxygen by azide anion in water. J Am Cheml Soc 104(3):903–905

    Article  CAS  Google Scholar 

  24. Schaap AP, Thayer AL, Faler GR, Goda K, Kimura T (1974) Singlet molecular oxygen and superoxide dismutase. J Am Chem Soc 96(12):4025–4026

    Article  CAS  Google Scholar 

  25. Su L, Feng J, Zhou X, Ren C, Li H, Chen X (2012) Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal Chem 84(13):5753–5758

    Article  CAS  Google Scholar 

  26. Wang W-F, Schuchmann MN, Schuchmann H-P, Knolle W, von Sonntag J, von Sonntag C (1999) Radical cations in the OH-radical-induced oxidation of thiourea and tetramethylthiourea in aqueous solution. J Am Chem Soc 121(1):238–245

    Article  CAS  Google Scholar 

  27. Dalui A, Pradhan B, Thupakula U, Khan AH, Kumar GS, Ghosh T, Satpati B, Acharya S (2015) Insight into the mechanism revealing the peroxidase mimetic catalytic activity of quaternary CuZnFeS nanocrystals: colorimetric biosensing of hydrogen peroxide and glucose. Nano 7(19):9062–9074

    CAS  Google Scholar 

  28. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

  29. Lin T, Zhong L, Song Z, Guo L, Wu H, Guo Q, Chen Y, Fu F, Chen G (2014) Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets. Biosens Bioelectron 62:302–307

    Article  CAS  Google Scholar 

  30. Lin T, Zhong L, Guo L, Fu F, Chen G (2014) Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nano 6(20):11856–11862

    CAS  Google Scholar 

  31. Ding C, Yan Y, Xiang D, Zhang C, Xian Y (2016) Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay. Microchim Acta 183(2):625–631

    Article  CAS  Google Scholar 

  32. Cai R, Yang D, Peng S, Chen X, Huang Y, Liu Y, Hou W, Yang S, Liu Z, Tan W (2015) Single nanoparticle to 3D Supercage: framing for an artificial enzyme system. J Am Chem Soc 137(43):13957–13963

    Article  CAS  Google Scholar 

  33. Wang N, Sun J, Chen L, Fan H, Ai S (2015) A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182(9):1733–1738

    Article  CAS  Google Scholar 

  34. Wang B, Ju P, Zhang D, Han X, Zheng L, Yin X, Sun C (2016) Colorimetric detection of H2O2 using flower-like Fe2(MoO4)3 microparticles as a peroxidase mimic. Microchim Acta 183(11):3025–3033

    Article  CAS  Google Scholar 

  35. Zhong Y, Deng C, He Y, Ge Y, Song G (2016) Exploring a monothiolated β-cyclodextrin as the template to synthesize copper nanoclusters with exceptionally increased peroxidase-like activity. Microchim Acta 183(10):2823–2830

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financed by Grants from National Natural Science Foundation of China (No. 21675127), Fundamental Research Funds for the Northwest A&F University of China (2014YB093, 2452015257), and Development Project of Qinghai Key Laboratory (No. 2017-ZJ-Y10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlong Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2000 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Zhu, W., Zhang, W. et al. Layered vanadium(IV) disulfide nanosheets as a peroxidase-like nanozyme for colorimetric detection of glucose. Microchim Acta 185, 7 (2018). https://doi.org/10.1007/s00604-017-2552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2552-1

Keywords

Navigation