Skip to main content
Log in

Impact of liquid drops on a rough surface comprising microgrooves

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Impact of water drops on a stainless steel surface comprising rectangular shaped parallel grooves is studied experimentally. Geometric parameters of the surface groove structure such as groove depth, groove width and solid pillar width separating any two successive grooves were kept at 7.5, 136 and 66 μm, respectively. The study was confined to the impact of drops in inertia dominated flow regime with Weber number in the range 15–257. Experimental results of drop impact process obtained for the grooved surface were compared with those obtained for a smooth surface to elucidate the influence of surface grooves on the impact process. The grooves definitely influence both spreading and receding processes of impacting liquid drops. A more striking observation from this study is that the receding process of impacting liquid drops is dramatically changed by the groove structure for all droplet Weber number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bayer IS, Megaridis CM (2006) Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics. J Fluid Mech 558:415–449

    Article  MATH  Google Scholar 

  • Biance A, Chevy F, Clanet C, Lagubeau G, Quéré D (2006) On the elasticity of an inertial liquid shock. J Fluid Mech 554:47–66

    Article  MATH  Google Scholar 

  • Bico J, Tordeux C, Quéré D (2001) Rough wetting. Europhys Lett 55:214–220

    Article  Google Scholar 

  • Bico J, Thiele U, Quéré D (2002) Wetting of textured surfaces. Colloids Surf A 206:41–46

    Article  Google Scholar 

  • Bussmann M, Chandra S, Mostaghimi J (2000) Modeling the splash of a droplet impacting a solid surface. Phys Fluids 12:3121–3132

    Article  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–549

    Article  Google Scholar 

  • Chen Y, He B, Lee J, Patankar NA (2005) Anisotropy in the wetting of rough surfaces. J Colloid Interface Sci 281:458–464

    Article  Google Scholar 

  • Clanet C, Béguin C, Richard D, Quéré D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208

    Article  MATH  Google Scholar 

  • Dussan EB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann Rev Fluid Mech 11:371–400

    Article  Google Scholar 

  • Engel OG (1955) Water drop collisions with solid surfaces. J Res Natl Bur Stand 54:281–298

    MATH  Google Scholar 

  • Fukai J, Shiba Y, Yumamoto T, Miyatake M, Poulikakos D, Megaridis CM, Zhao Z (1995) Wetting effects on the spreading of a liquid droplet with a flat surface: Experiment and modeling. Phys Fluids 7:236–247

    Article  Google Scholar 

  • de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–842

    Article  Google Scholar 

  • Gogte S, Vorobieff P, Truesdell R, Mammoli A (2005) Effective slip on textured superhydrophobic surfaces. Phys Fluids 17:051701

    Article  Google Scholar 

  • He B, Patankar NA, Lee J (2003) Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19:4999–5003

    Article  Google Scholar 

  • Hitchcock SJ, Carroll NT, Nicholas MG (1981) Some effects of substrate roughness on wettability. J Mat Sci 16:714–732

    Article  Google Scholar 

  • Hocking LM (1976) A moving fluid interface on a rough surface. J Fluid Mech 76:801–817

    Article  MATH  Google Scholar 

  • Kim H-Y, Chun J-H (2001) The recoiling of liquid droplets upon collision with solid surfaces. Phys Fluids 13:643–659

    Article  Google Scholar 

  • Levin Z, Hobbs PV (1971) Splashing of water drops on solid and wetted surfaces: Hydrodynamics and charge separation. Philos Trans R Soc London Ser A 269:555–585

    Article  Google Scholar 

  • Miskis MJ, Davis SH (1994) Slip over rough and coated surfaces. J Fluid Mech 273:125–139

    Article  Google Scholar 

  • Mundo C, Sommerfeld M, Tropea C (1995) Droplet-wall collisions: Experimental studies of the deformation and breakup process. Int J Multiphase Flow 21:151–173

    Article  MATH  Google Scholar 

  • Nakae H, Inui R, Hirata Y, Saito H (1998) Effect of surface roughness on wettability. Acta Mater 46:2313–2318

    Google Scholar 

  • Nakae H, Yoshida M, Yokota M (2005) Effect of roughness pitch of surfaces on their wettability. J Mat Sci 40:2287–2293

    Article  Google Scholar 

  • Oliver JF, Huh C, Mason SG (1976) The apparent contact angle of liquids on finely-grooved solid surfaces—a SEM study. J Adhesion 8:223–234

    Article  Google Scholar 

  • Ou J, Perot B, Rothstein JP (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16:4635–4643

    Article  Google Scholar 

  • Range K, Feuillebois F (1998) Influence of surface roughness on liquid droplet impact. J Colloid Interface Sci 203:16–30

    Article  Google Scholar 

  • Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12:61–93

    Article  Google Scholar 

  • Richardson S (1973) On the no-slip boundary condition. J Fluid Mech 59:707–719

    Article  MATH  Google Scholar 

  • Rioboo R, Marengo M, Tropea C (2001) Outcomes from a drop impact on solid surfaces. Atomization Sprays 11:155–166

    Google Scholar 

  • Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33:112–124

    Google Scholar 

  • Roisman IV, Rioboo R, Tropea C (2002) Normal impact of a liquid droplet on a dry surface: model for spreading and receding. Proc R Soc Lond Ser A458:1411–1430

    Article  Google Scholar 

  • Rozhkov A, Prunet-Foch B, Vignes-Adler M (2004) Dynamics of a liquid lamella resulting from the impact of a water drop on a small target. Proc R Soc Lond Ser A460:2681–2704

    Google Scholar 

  • Šikalo S, Marengo M, Tropea C, Ganic GN (2002) Analysis of impact of droplets on horizontal surfaces. Exp Thermal Fluid Sci 25:503–510

    Article  Google Scholar 

  • Šikalo S, Wilhelm H-D, Roismann IV, Jakirlić S, Tropea C (2005) Dynamic contact angle of spreading droplets: experiments and simulations. Phys Fluids 17:062013

    Google Scholar 

  • Shakeri S, Chandra S (2002) Splashing of molten tin droplets on a rough steel surface. Int J Heat Mass Transf 45:4561–4575

    Article  Google Scholar 

  • Sivakumar D, Katagiri K, Sato T, Nishiyama H (2005) Spreading behavior of an impacting drop on a structured rough surface. Phys Fluids 17:100608

    Article  Google Scholar 

  • Stow CD, Hadfield MG (1981) An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc R Soc Lond Ser A373:419–441

    Article  Google Scholar 

  • Thoroddsen ST, Sakakibara J (1998) Evolution of the fingering pattern of an impacting drop. Phys Fluids 10:1359–1374

    Article  Google Scholar 

  • Truesdell R, Mammoli A, Vorobieff P, Swol F, Brinker CJ (2006) Drag reduction on a patterned superhydrophobic surface. Phys Rev Lett 97:044504

    Article  Google Scholar 

  • Vander Wal RL, Berger GM, Mozes SD (2006) The combined influence of a rough surface and thin fluid film upon the splashing threshold and splash dynamics of a droplet impacting onto them. Exp Fluids 40:23–32

    Article  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–995

    Article  Google Scholar 

  • Xu L (2007) Liquid drop splashing on smooth, rough and textured surfaces. http://www.arXiv.org (arXiv:physics/0702080v1 9 Feb 2007)

  • Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing…. Ann Rev Fluid Mech 38:159–192

    Article  MathSciNet  Google Scholar 

  • Zhao Y, Lu Q, Li M, Li X (2007) Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface. Langmuir 23:6212–6217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannan, R., Sivakumar, D. Impact of liquid drops on a rough surface comprising microgrooves. Exp Fluids 44, 927–938 (2008). https://doi.org/10.1007/s00348-007-0451-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-007-0451-7

Keywords

Navigation