Skip to main content
Log in

Turbulence measurements in a swirling pipe flow

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper reports laser-Doppler measurements of the mean flow and turbulence stresses in a swirling pipe flow. Experiments were carried out under well-controlled laboratory conditions in a refractive index-matched pipe flow facility. The results show pronounced asymmetry in mean and fluctuating quantities during the downstream decay of the swirl. Experimental data reveal that the swirl significantly modifies the anisotropy of turbulence and that it can induce explosive growth of the turbulent kinetic energy during its decay. Anisotropy invariant mapping of the turbulent stresses shows that the additional flow deformation imposed by initially strong swirling motion forces turbulence in the core region to tend towards the isotropic two-component state. When turbulence reaches this limiting state it induces rapid production of turbulent kinetic energy during the swirl decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The mean rate of deformation tensor \(\partial\overline{U}_i/\partial x_j\) may be written as

    $$ {{\partial\overline{U}_i}\over {\partial x_j}}= \underbrace{ {{1}\over {2}}\left({{\partial \overline{U}_i}\over {\partial x_j}}+ {{\partial \overline{U}_j}\over {\partial x_i}}\right)}_ {\rm strain\;\;part} + \underbrace{ {{1}\over {2}}\left({{\partial \overline{U}_i}\over {\partial x_j}}- {{\partial \overline{U}_j}\over {\partial x_i}}\right)}_ {\rm rotation\;\;part}.$$

References

  • Algifri AH, Bhardwaj RK, Rao YV (1987) Prediction of the decay process in turbulent swirl flow. Proc Instn Eng 201:279–283

    Google Scholar 

  • Baker DW (1967) Decay of swirling, turbulent flow of incompressible fluids in long pipes. PhD Thesis, University of Maryland

  • Cassidy JJ, Falvey T (1970) Observations of unsteady flow arising after vortex breakdown. J Fluid Mech 41:727–736

    Article  Google Scholar 

  • Durst F, Jovanović J, Sender J (1995) LDA measurements in the near-wall region of a turbulent pipe flow. J Fluid Mech 295:305–335

    Article  Google Scholar 

  • Durst F, Fischer M, Jovanović J, Kikura H (1998) Methods to set up and investigate low Reynolds number, fully developed turbulent plane channel flows. J Fluids Eng 120:496–503

    Google Scholar 

  • Eggels JGM, Boersma BJ, Nieuwstadt FTM (1994) Direct and large-eddy simulations of turbulent flow in an axially rotating pipe. J Fluid Mech (submitted)

  • Fejer A, Lavan Z, Wolf L (1968) Study of swirling fluid flows. ARL 68-0173, Aeroscale Research Laboratories

  • Hirai S, Takagi T, Matsumoto M (1988) Predictions of the laminarization phenomena in an axially rotating pipe flow. J Fluids Eng 110:424–430

    Google Scholar 

  • Hopfinger EJ, Browand FK, Gagne Y (1982) Turbulence and waves in a rotating tank. J Fluid Mech 125:505–534

    Article  Google Scholar 

  • Ibbetson A, Tritton DJ (1975) Experiments in a rotating fluid. J Fluid Mech 68:639–672

    Article  Google Scholar 

  • Jacquin L, Leuchter O, Cambon C, Mathieu J (1990) Homogeneous turbulence in the presence of rotation. J Fluid Mech 220:1–52

    Article  MATH  Google Scholar 

  • Jakirić S (1997) Reynolds-Spannungs-Modellierung komplexer turbulenter Strömungen. Dissertation, Universitatät Erlangen-Nürnberg

  • Jovanović J (2004) The statistical dynamics of turbulence. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Jovanović J, Otić I (2000) On the constitutive relation for the Reynolds stresses and the Prandtl–Kolmogorov hypothesis of effective viscosity in axisymmetric strained turbulence. J Fluids Eng 122:48–50

    Article  Google Scholar 

  • Kikuyama K, Murakami M, Nishibori K, Madea K (1983) Flow in an axially rotating pipe. Bull JSME 26:506–513

    Google Scholar 

  • Kikuyama K, Murakami M, Nishibori K (1983) Development of three-dimensional turbulent boundary layer in axially rotating pipe. J Fluid Eng 105:154–160

    Article  Google Scholar 

  • Kitoh O (1991) Experimental study of turbulent swirling flow in a straight pipe. J Fluid Mech 225:445–479

    Article  Google Scholar 

  • Laufer J (1954) The structure of turbulence in fully developed pipe flow. NACA TN 1174

  • Launder BE, Morse A (1979) Numerical prediction of axisymmetric free shear flows with a Reynolds stress closure. In: Durst F et al (eds) Turbulent shear flows I. Springer, Berlin Heidelberg New York, pp 279–294

    Google Scholar 

  • Li H, Tomita Y (1994) Characteristics of swirling flow in a circular pipe. J Fluids Eng 116:370–373

    Article  Google Scholar 

  • Lumley JL (1978) Computational modeling of turbulent flows. Adv Appl Mech 18:123–176

    MATH  MathSciNet  Google Scholar 

  • Lumley JL, Newman GR (1977) The return to isotropy of homogeneous turbulence. J Fluid Mech 82:161–178

    Article  MATH  MathSciNet  Google Scholar 

  • Moser RD, Kim J, Mansour NN (1999) DNS of turbulent channel flow up to Re τ=590. Phys Fluids 11:943–945

    Article  MATH  Google Scholar 

  • Murakami M, Kito O, Katayama Y, Iida Y (1976) An experimental study of swirling flow in pipes. Bull JSME 19:118–126

    Google Scholar 

  • Nishibori K, Kikuyama K, Murakami M (1987) Laminarisation of turbulent flow in the inlet region of an axially rotating pipe. Int J JSME 30:255–262

    Google Scholar 

  • Nishibori K, Kikuyama K, Kimura T (1988) Effect of inlet swirl on the turbulent flow in an axially rotating pipe. In: Proceedings of 2nd international symposium on transport phenomena, Honolulu, pp 235–250

  • Orlandi P, Fatica M (1997) Direct simulations of a turbulent pipe rotating along the axis. J Fluid Mech 343:43–72

    Article  MATH  Google Scholar 

  • Reich G (1988) Strömung und Wärmeübertragung in einem axial rotierenden Rohr. PhD Thesis, Technische Hochschule Darmstadt

  • Reich G, Beer H (1989) Fluid flow and heat transfer in an axially rotating pipe: effect of rotation on turbulent pipe flow. Int J Heat Mass Transf 31:551–562

    Article  Google Scholar 

  • Senoo Y, Nagata T (1972) Swirl flow in long pipes with different roughness. Bull JSME 15:1514–1521

    Google Scholar 

  • Speziale CG (1998) A review of material frame-indifference in mechanics. Appl Mech Rev 51:489–504

    Article  Google Scholar 

  • Steenbergen W (1995) Turbulent pipe flow with swirl. PhD Thesis, University of Eindhoven

  • Traugott SC (1958) Influence of solid body rotation on screen produced turbulence. NACA TN 4135

  • Veeravalli SV (1990) An experimental study of the effects of rapid rotation on turbulence. Annual Research Briefs, Center for Turbulence Research, Stanford University, pp 203–220

  • Wigeland RA, Nagib HM (1978) Grid generated turbulence with and without rotation about the streamwise direction. IIT Fluid and Heat Transfer Report R78-1

  • Wolf L, Lavan Z, Fejer A (1969) Measurements of the decay of swirl in turbulent flow. AIAA J 7:971–973

    Article  Google Scholar 

Download references

Acknowledgments

This research received financial support from the Deutsche Forschungsgemeinschaft (Grant Jo 240/3-2). We gratefully acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jovanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pashtrapanska, M., Jovanović, J., Lienhart, H. et al. Turbulence measurements in a swirling pipe flow. Exp Fluids 41, 813–827 (2006). https://doi.org/10.1007/s00348-006-0206-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-006-0206-x

Keywords

Navigation