Skip to main content
Log in

Polymorphic phase transition and morphotropic phase boundary in Ba1−x Ca x Ti1−y Zr y O3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper deals with Ca and Zr co-doped BaTiO3 (BCTZ(x, y)) (x = 0.1, 0.13, 0.2 and y = 0.05, 0.1, 0.15). These ceramics were prepared using the conventional solid state method. The symmetry, dielectric properties, Raman spectroscopy, ferroelectric behavior and piezoelectric effect were examined. X-ray diffraction (XRD) results display that morphotropic boundary occurs from tetragonal to orthorhombic region of BCZT(x=0.1, 0.2, y=0.05, 0.1) and polymorphic phase transitions from tetragonal to orthorhombic, orthorhombic to rhombohedral regions of BCZT(x=0.13, y=0.1). The evolution of the Raman spectra was investigated as a function of compositions at room temperature, in correlation with XRD analysis and dielectric measurements. We note that the substitution of Ca in Ba site and Zr ions in Ti site slightly decreased the cubic-tetragonal temperature transition (T C) and increased the orthorhombic–tetragonal (T 1) and rhombohedral–orthorhombic (T 2) temperatures transitions. The ferroelectric properties were examined by a PE hysteresis loop. The two parameters ΔT 1 and ΔT 2 are defined as ΔT 1 = T C − T 1 and ΔT 2 = T C − T 2, they come close to T C for x = 0.13, y = 0.1, which reveals that this composition is around the polymorphic phase. The excellent piezoelectric coefficient of d 33 = 288 pC N−1, the electromechanical coupling factor k p = 40%, high constant dielectric 9105, coercive field E c = 0.32 (KV mm−1) and remanent polarization P r = 0.1 (µc mm−2) were obtained for composition x = 0.13, y = 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Noheda, D.E. Cox, G. Shirane, J. Gao, Z.-G. Ye, Phase diagram of the ferroelectric relaxor (1 − x) PbMg1/3Nb2/3O3–xPbTiO3. Phys. Rev. B 66, 054104 (2002)

    Article  ADS  Google Scholar 

  2. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100, 051606–051646 (2006)

    Article  ADS  Google Scholar 

  3. Z. Kutnjak, J. Petzelt, R. Blinc, The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956–959 (2006)

    Article  ADS  Google Scholar 

  4. H. Zaghouene, H. Khemakhem, A. Simon, X-ray diffraction, dielectric, pyroelectric, piezoelectric and Raman spectroscopy studies on (Ba0.95Ca0.05)0.8875Bi0.075TiO3 ceramic. Ceram. Int. 38, 3135–3139 (2012)

    Article  Google Scholar 

  5. L. Zhou, P.M. Vilarinho, J.L. Baptista, Role of defects on the aging behavior of manganese-doped lead iron tungstate relaxor ceramics. J. Am. Ceram. Soc. 83, 413–414 (2000)

    Article  Google Scholar 

  6. S.H. Choy, W.K. Li, H.K. Li, K.H. Lam, H.L.W. Chan, Study of BNKLBT-1.5 lead-free ceramic/epoxy 1-3 composites. J. Appl. Phys. 102, 1–5 (2007)

    Article  Google Scholar 

  7. R. Bechmann, Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations. Acoust. Soc. Am. 28, 347–350 (1956)

    Article  ADS  Google Scholar 

  8. T. Takenaka, H. Nagata, Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25, 2693–2700 (2005)

    Article  Google Scholar 

  9. T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113–126 (2007)

    Article  Google Scholar 

  10. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Piezoelectric and strain properties of Ba(Ti1-x Zrx)O3 ceramics. J. Appl. Phys. 92, 1489–1493 (2002)

    Article  ADS  Google Scholar 

  11. S. Su, R. Zuo, S. Lu, Z. Xu, X. Wang, L. Li, Poling dependence and stability of piezoelectric properties of Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3 ceramics with huge piezoelectric coefficients. Curr. Appl. Phys. 11, S120–S123 (2011)

    Article  ADS  Google Scholar 

  12. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602–257604 (2009)

    Article  ADS  Google Scholar 

  13. J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, J. Wang, Role of room-temperature phase transition in the electrical properties of (Ba, Ca)(Ti, Zr)O3 ceramics. Scripta Mater. 65, 771–774 (2011)

    Article  Google Scholar 

  14. P. Wang, Y. Li, Y. Lu, Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcinations and sintering temperature. J. Eur. Ceram. Soc. 31, 2005–2012 (2011)

    Article  Google Scholar 

  15. J. Gao, D. Xue, Y. Wang, D. Wang, L. Zhang, H. Wu, S. Guo, H. Bao, C. Zhou, W. Liu, S. Hou, G. Xiao, X. Ren, Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3 ceramics. Appl. Phys. Lett. 99, 092901 (2011)

    Article  ADS  Google Scholar 

  16. Y. Tian, L. Wei, X. Chao, Z. Liu, Z. Yang, Phase transition behavior and large piezoelectricity near the morphotropic phase boundary of lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics. J. Am. Ceram. Soc. 96(2), 496–502 (2013)

    Google Scholar 

  17. M.C. Ehmke, F.H. Schader, K.G. Webber, J. RÖdel, J.E. Blendell, K.J. Bowman, Stress, temperature and electric field effects in the lead-free (Ba, Ca)(Ti, Zr)O3 piezoelectric system. Acta Mater. 78, 37–45 (2014)

    Article  Google Scholar 

  18. W. Ge, J. Li, D. Viehland, Electric-field-dependent phase volume fractions and enhanced piezoelectricity near the polymorphic phase boundary of (K0.5Na0.5)1−xLix NbO3 textured ceramics. Phys. Rev. B 83, 224110 (2011)

    Article  ADS  Google Scholar 

  19. F. Jian, R. Zuo, X. Wang, L. Li, Polymorphic phase transition and enhanced piezoelectric properties of LiTaO3 -modified (Na0.52K0.48) (Nb0.93Sb0.07)O3 lead-free ceramics. J. Phys. D Appl. Phys. 42, 012006 (2009)

    Article  ADS  Google Scholar 

  20. A. Simon, J. Ravez, M. Maglione, Relaxor properties of Ba0.9Bi0.067(Ti1-xZrx)O3 ceramics. Solid State Sci. 7, 925–930 (2005)

    Article  ADS  Google Scholar 

  21. E. Venkata Ramana, A. Mahajan, M.P.F. Grac, S.K. Mendiratta, J.M. Monteiro, M.A. Valente, Structure and ferroelectric studies of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 piezoelectric ceramics. Mater. Res. Bull. 48, 4395–4401 (2013)

    Article  Google Scholar 

  22. M. Sutapun, W. Vittayakorn, R. Muanghlua, N. Vittayakorn, High piezoelectric response in the new coexistent phase boundary of 0.87BaTiO3–(0.13-x)BaZrO3-xCaTiO3. Mater. Des. 86, 564–574 (2015)

    Article  Google Scholar 

  23. M. DiDomenico Jr., S.H. Wemple, S.P.S. Porto, R.P. Bauman, Raman spectrum of single-domain BaTiO3. Phys. Rev. 174, 522–530 (1968)

    Article  ADS  Google Scholar 

  24. U.D. Venkateswaran, High-pressure Raman studies of polycrystalline BaTiO3. Phys. Rev. B 58, 14256–14260 (1998)

    Article  ADS  Google Scholar 

  25. Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, Raman scattering studies on nanocrystalline BaTiO3 Part II-consolidated polycrystalline ceramics. J. Raman Spectrosc. 38, 1300–1306 (2007)

    Article  ADS  Google Scholar 

  26. U.M. Pasha, H. Zheng, O.P. Thakur, A. Feteira, K.R. Whittle, D.C. Sinclair, I.M. Reaney, In situ Raman spectroscopy of A-site doped barium titanate. Appl. Phys. Lett. 91, 062908 (2007)

    Article  ADS  Google Scholar 

  27. X. Deng, X. Wang, H. Wen, A. Kang, Z. Gui, L. Li, Phase transitions in nanocrystalline barium titanate ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89, 1059–1064 (2006)

    Article  Google Scholar 

  28. P. Ghosez, X. Gonze, J.-P. Michenaud, Coulomb interaction and ferroelectric instability of BaTiO3. Europhys. Lett. 33, 713–718 (1996)

    Article  ADS  Google Scholar 

  29. P.S. Dobal, R.S. Katiyar, Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy. J. Raman Spectrosc. 33, 405–423 (2002)

    Article  ADS  Google Scholar 

  30. E. Pytte, Theory of perovskite ferroelectrics. Phys. Rev. B 5, 3758–3769 (1972)

    Article  ADS  Google Scholar 

  31. A. Jalalian, A.M. Grishin, X. Wang, S.X. Dou, Fabrication of Ca, Zr doped BaTiO3 ferroelectric nanofibers by electrospinning. Phys. Status Solidi C 9, 1574–1576 (2012)

    Article  ADS  Google Scholar 

  32. J. Ghosh, S. Mazumder, Structural phase transitions during high energy ball milling of BaTiO3. Phase Transit. 85, 694–707 (2012)

    Article  Google Scholar 

  33. C.J. Xiao, C.Q. Jin, X.H. Wang, Crystal structure of dense nanocrystalline BaTiO3 ceramics. J. Mater. Chem. Phys. 111, 209–212 (2008)

    Article  Google Scholar 

  34. M.H. Frey, D.A. Payne, Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B 54, 3158–3168 (1996)

    Article  ADS  Google Scholar 

  35. V.S. Puli, A. Kumar, D.B. Chrisley, M. Tomozawa, J.F. Scott, R.S. Katiyar, Barium zirconate-titanate/barium calcium-titanate ceramics via sol–gel process: novel high-energy-density capacitors. J. Phys. D Appl. Phys. 44, 395403 (2011)

    Article  ADS  Google Scholar 

  36. V. Krayzman, I. Levin, J.C. Woicik, F. Bridges, E.J. Nelson, D.C. Sinclair, Ca K-edge X-ray absorption fine structure in BaTiO3–CaTiO3 solid solutions. J. Appl. Phys. 113, 044106 (2013)

    Article  ADS  Google Scholar 

  37. L. Khemakhema, A. Kabadou, A. Maalej, A. Ben Salah, A. Simon, M. Maglione, New relaxor ceramic with composition BaTi1−x(Zn1/3Nb2/3)xO3. J. Alloy Compd. 452, 451–455 (2008)

    Article  Google Scholar 

  38. J. Hao, W. Bai, W. Li, J. Zhai, Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 95, 1–9 (2012)

    Article  Google Scholar 

  39. X. Wang, P. Liang, L. Wei, X. Chao, Z. Yang, Phase evolution and enhanced electrical properties of Ba0.85Ca0.15-xYxZr0.1Ti0.9O3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 26(7), 5217–5225 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ben Abdessalem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdessalem, M.B., Aydi, S., Aydi, A. et al. Polymorphic phase transition and morphotropic phase boundary in Ba1−x Ca x Ti1−y Zr y O3 ceramics. Appl. Phys. A 123, 583 (2017). https://doi.org/10.1007/s00339-017-1196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1196-7

Navigation