Skip to main content
Log in

CG dinucleotide periodicities recognized by the Dnmt3a–Dnmt3L complex are distinctive at retroelements and imprinted domains

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The Dnmt3a and Dnmt3L genes are critical mediators of cytosine methylation during gametogenesis, with major actions noted at transposable elements and imprinted loci. The Dnmt3aDnmt3L complex was recently described to have preferential activity at CG dinucleotides located 8-10 bp apart. Because cytosine methylation is heterogeneously distributed in the genome, we tested whether this relative sequence preference explains the effects of mutation of the Dnmt3a and Dnmt3L genes using bioinformatic analysis. We found that the human and mouse genomes are significantly enriched in a CG dinucleotide periodicity of 2 bp, leading to an increased frequency of CGs spaced 8 bp apart that represent widespread targets for this protein complex. When we broke down the human and mouse genomes by annotation, we found that this significant 2-bp periodicity and increased 8-bp periodicity are maintained in Alu SINEs in both species. The 8-bp periodicity was mapped genome-wide, identifying enrichment at the promoters of both paternally and maternally methylated imprinted genes and at CG dinucleotide-enriched sequences. We conclude that CG dinucleotide periodicity helps to explain some but not all of the relative sequence specificity of mutations of Dnmt3a or Dnmt3L in the establishment of germline cytosine methylation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bock C, Paulsen M, Tierling S, Mikeska T, Lengauer T et al (2006) CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet 2:e26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bock C, Walter J, Paulsen M, Lengauer T (2007) CpG island mapping by epigenome prediction. PLoS Comput Biol 3:e110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99

    Article  PubMed  CAS  Google Scholar 

  • Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539

    Article  PubMed  Google Scholar 

  • Carroll ML, Roy-Engel AM, Nguyen SV, Salem AH, Vogel E et al (2001) Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity. J Mol Biol 311:17–40

    Article  CAS  PubMed  Google Scholar 

  • Ciccone DN, Su H, Hevi S, Gay F, Lei H et al (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461:415–418

    Article  CAS  PubMed  Google Scholar 

  • Clark SJ, Harrison J, Frommer M (1995) CpNpG methylation in mammalian cells. Nat Genet 10:20–27

    Article  CAS  PubMed  Google Scholar 

  • Duncan BK, Miller JH (1980) Mutagenic deamination of cytosine residues in DNA. Nature 287:560–561

    Article  CAS  PubMed  Google Scholar 

  • Edwards CA, Ferguson-Smith AC (2007) Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol 19:281–289

    Article  CAS  PubMed  Google Scholar 

  • Fazzari MJ, Greally JM (2004) Epigenomics: beyond CpG islands. Nat Rev Genet 5:446–455

    Article  CAS  PubMed  Google Scholar 

  • Ferguson-Smith AC, Greally JM (2007) Epigenetics: perceptive enzymes. Nature 449:148–149

    Article  CAS  PubMed  Google Scholar 

  • Fryxell KJ, Moon WJ (2005) CpG mutation rates in the human genome are highly dependent on local GC content. Mol Biol Evol 22:650–658

    Article  CAS  PubMed  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  PubMed  Google Scholar 

  • Glass JL, Thompson RF, Khulan B, Figueroa ME, Olivier EN et al (2007) CG dinucleotide clustering is a species-specific property of the genome. Nucleic Acids Res 35:6798–6807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greally JM (2002) Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome. Proc Natl Acad Sci USA 99:327–332

    Article  CAS  PubMed  Google Scholar 

  • Hackenberg M, Previti C, Luque-Escamilla PL, Carpena P, Martinez-Aroza J et al (2006) CpGcluster: a distance-based algorithm for CpG-island detection. BMC Bioinformatics 7:446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurka J, Gentles AJ (2006) Origin and diversification of minisatellites derived from human Alu sequences. Gene 365:21–26

    Article  CAS  PubMed  Google Scholar 

  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N et al (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M et al (2007) Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16:2272–2280

    Article  CAS  PubMed  Google Scholar 

  • Ke X, Thomas NS, Robinson DO, Collins A (2002a) A novel approach for identifying candidate imprinted genes through sequence analysis of imprinted and control genes. Hum Genet 111:511–520

    Article  CAS  PubMed  Google Scholar 

  • Ke X, Thomas SN, Robinson DO, Collins A (2002b) The distinguishing sequence characteristics of mouse imprinted genes. Mamm Genome 13:639–645

    Article  CAS  PubMed  Google Scholar 

  • Khulan B, Thompson RF, Ye K, Fazzari MJ, Suzuki M et al (2006) Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res 16:1046–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klose RJ, Sarraf SA, Schmiedeberg L, McDermott SM, Stancheva I et al (2005) DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell 19:667–678

    Article  CAS  PubMed  Google Scholar 

  • Kriegs JO, Churakov G, Jurka J, Brosius J, Schmitz J (2007) Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends Genet 23:158–161

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Lucifero D, La Salle S, Bourc’his D, Martel J, Bestor TH et al (2007) Coordinate regulation of DNA methyltransferase expression during oogenesis. BMC Dev Biol 7:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luedi PP, Hartemink AJ, Jirtle RL (2005) Genome-wide prediction of imprinted murine genes. Genome Res 15:875–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy PL, Cleary ML, Brown PO, Lieb JD (2003) Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc Natl Acad Sci USA 100:6364–6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuwaki M, Verreault A (2004) Maintenance DNA methylation of nucleosome core particles. J Biol Chem 279:2904–2912

    Article  CAS  PubMed  Google Scholar 

  • Ooi SK, Qiu C, Bernstein E, Li K, Jia D et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin CM, VandeVoort CA, Teplitz RL, Schmid CW (1994) Alu repeated DNAs are differentially methylated in primate germ cells. Nucleic Acids Res 22:5121–5127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabo PJ, Kuehn MS, Thurman R, Johnson BE, Johnson EM et al (2006) Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat Methods 3:511–518

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Suzuki M, Abe T, Hosoyama T, Himeno E et al (2007) Cell type-specific methylation profiles occurring disproportionately in CpG-less regions that delineate developmental similarity. Genes Cells 12:1123–1132

    Article  CAS  PubMed  Google Scholar 

  • Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 103:1412–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schones DE, Cui K, Cuddapah S, Roh TY, Barski A et al (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898

    Article  CAS  PubMed  Google Scholar 

  • Suzuki MM, Kerr AR, De Sousa D, Bird A (2007) CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res 17:625–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99:3740–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassetzky NS, Ten OA, Kramerov DA (2003) B1 and related SINEs in mammalian genomes. Gene 319:149–160

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S et al (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466

    Article  CAS  PubMed  Google Scholar 

  • Webster KE, O’Bryan MK, Fletcher S, Crewther PE, Aapola U et al (2005) Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci USA 102:4068–4073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by Einstein’s Center for Epigenomics and grants from the National Institutes of Health (NIH) to JMG (R01 HD044078 and R01 HG004401) and from the MRC and Wellcome Trust to AFS. JLG is supported by NIH MSTP Training Grant GM007288.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Greally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 256 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glass, J.L., Fazzari, M.J., Ferguson-Smith, A.C. et al. CG dinucleotide periodicities recognized by the Dnmt3a–Dnmt3L complex are distinctive at retroelements and imprinted domains. Mamm Genome 20, 633–643 (2009). https://doi.org/10.1007/s00335-009-9232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9232-3

Keywords

Navigation