Skip to main content

Advertisement

Log in

Continuous free flap monitoring: a modification of the Licox catheter probe system

  • Original Paper
  • Published:
European Journal of Plastic Surgery Aims and scope Submit manuscript

Abstract

Early recognition of flap failure is the solution for flap salvage. Many methods have been used to monitor free flaps. The Licox Catheter pO2 Micro-Probe instrument is used for continuous determination of oxygen partial pressure in body fluids (pO2) and tissues (ptiO2). Minimally invasive catheter microprobes are used as sensors. Based on our experiences with this kind of tissue-oxygen measurement and according to our clinical experience, the Licox catheter probe system was modified. An online alarm system was developed to inform medical staff at the exact moment when the Licox software detects a definite fall in the ptiO2 level in the transferred flap tissue. This modified device not only allows staff-saving free flap monitoring but is also time saving and facilitates online monitoring with the possibility of an immediate surgical intervention if vascular impairment should occur. This is a relevant factor for the success of a surgical revision

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Berger A, Machens HG, Mailender P (1995) Approaches to postoperative blood flow monitoring after free tissue transfer. Which is the best? Int Angiol 14:288–296

    Google Scholar 

  2. Biemer E (1981) Salvage operations for complications following replantation and free tissue transfer. Int Surg 66:37–38

    CAS  PubMed  Google Scholar 

  3. Disa JJ, Cordeiro PG, Hidalgo DA (1999) Efficacy of conventional monitoring techniques in free tissue transfer: an 11-year experience in 750 consecutive cases. Plast Reconstr Surg 104:97–101

    CAS  PubMed  Google Scholar 

  4. Durlik M, Benichoux R, Mainard D, Merle M (1989) Laser-doppler versus fluorometry in the postoperative assessment of a cutaneous free flap. Microsurgery 10:170–174

    CAS  PubMed  Google Scholar 

  5. Edsander-Nord A, Röjdmark J, Wickman M (2002) Metabolism in pedicled and free TRAM flaps: a comparison using the microdialysis technique. Plast Reconstr Surg 109:664–673

    PubMed  Google Scholar 

  6. Fernando B, Young VL, Logan S (1997) Miniature implantable laser doppler probe monitoring of free tissue transfer. Ann Plast Surg 20:434–442

    Google Scholar 

  7. Frey M, Freilinger G, Holle J, Mandl H (1983) Percutaneous measurement of oxygen partial pressure as an evaluation method of free flaps. Handchir Mikrochir Plast Chir 15:96–100

    CAS  PubMed  Google Scholar 

  8. Futran ND, Stack BC, Hollenbeak C, Scharf JE (2000) Green light photoplethysmography monitoring of free flap. Arch Otolaryngol Head Neck Surg 126:659–662

    CAS  PubMed  Google Scholar 

  9. Heden P, Arnander C (1992) Temperature load test to increase the accuracy of laser Doppler monitoring of flaps. Scand J Plast Reconstr Hand Surg 26:29–32

    CAS  Google Scholar 

  10. Herrberger U, Tilgner A, Schumann D (1989) The value of transcutaneous oxygen tension for estimation of blood flow insufficiency in myocutaneous island flaps in rats. Handchir Mikrochir Plast Chir 21:246–251

    CAS  PubMed  Google Scholar 

  11. Hidalgo DA, Jones CS (1990) The role of emergent exploration in free tissue transfer: a review of 150 consecutive cases. Plast Reconstr Surg 86:492–498

    CAS  PubMed  Google Scholar 

  12. Hirigoyen MB, Urken ML, Weinberg H (1995) Free flap monitoring: a review of current practice. Microsurgery 16:723–726

    CAS  PubMed  Google Scholar 

  13. Hirigoyen MB, Blackwell KE, Zhang WX, Silva L, Weinberg H, Urken ML (1997) Continuous tissue oxygen tension measurement as a monitor of free-flap viability. Plast Reconstr Surg 99:763–773

    CAS  PubMed  Google Scholar 

  14. Hjortdal VE, Hauge E, Hansen ES (1992) Differential effects of venous stasis and arterial insufficiency on tissue oxygenation in myocutaneous island flaps: an experimental study in pigs. Plast Reconstr Surg 89:521–529

    CAS  PubMed  Google Scholar 

  15. Irwin MS, Thorniley, Dore CJ, Green CJ (1995) Near infra-red spectroscopy: a non invasive monitor of perfusion and oxygenation within the microcirculation of limps and flaps. Br J Plast Surg 48:14–22

    CAS  PubMed  Google Scholar 

  16. Jenkins S, Sepka R, Barwick WJ (1988) Routine use of laser Doppler flowmetry for monitoring autologous tissue transplants. Ann Plast Surg 21:423–427

    CAS  PubMed  Google Scholar 

  17. Jones JW, Wiebalck R (1992) Continuous postoperative free-flap monitoring with an EKG-interfaced photoplethysmograph. J Reconstr Microsurg 8:61–62

    CAS  PubMed  Google Scholar 

  18. Jones JW, Glassford EJ, Hillman WCJ (1989) Remote monitoring of free flaps with telephonic transmission of Photoplethysmograph waveforms. J Reconstr Microsurg 5:141–144

    CAS  PubMed  Google Scholar 

  19. Kamolz LP, Schrögendorfer KF, Giovanoli P, Koller R, Frey M (2002) Continuous free-flap monitoring with tissue-oxygen measurements: experiences of the last years. Handchir Mikrochir Plast Chir 34:195–200

    Article  CAS  PubMed  Google Scholar 

  20. Kamolz LP, Schrögendorfer KF, Giovanoli P, Koller R, Frey M (2002) Continuous free-flap monitoring with tissue-oxygen measurements: three-year experience. J Reconstr Microsurg 18:487–91

    Article  PubMed  Google Scholar 

  21. Khouri RK, Shaw WW (1992) Monitoring of free flaps with surface-temperature recordings: is it reliable? Plast Reconstr Surg 89:495–502

    Google Scholar 

  22. Liss AG, Liss P (2000) Use of a modified oxygen microelectrode and laser-Doppler flowmetry to monitor changes in oxygen tension and microcirculation in a flap. Plast Reconstr Surg 105:2072–2078

    CAS  PubMed  Google Scholar 

  23. Maas AIR, Fleckenstein W, de Jong DA (1993) Monitoring cerebral oxygenation: experimental studies and preliminary clinical results of continuous monitoring of cerebrospinal fluid and brain tissue oxygen tension. Acta Neurochir (Wien) 59:50–57

    Google Scholar 

  24. Machens HG, Mailender P, Rieck, Berger A (1994) techniques of postoperative blood flow monitoring after free tissue transfer: an overview. Microsurgery 15:778–786

    CAS  PubMed  Google Scholar 

  25. Machens HG, Mailender P, Reimer R, Pallua N, Lei Y, Berger A (1997) Postoperative blood flow monitoring after free tissue transfer by means of the hydrogen clearance technique. Plast Reconstr Surg 99:493–503

    CAS  PubMed  Google Scholar 

  26. Mailender P, Machens HG, Waurik R, Rieck B, Berger A (1994) Routine monitoring in patients with free tissue transfer by laser-Doppler flowmetry. Microsurgery 15:196–202

    PubMed  Google Scholar 

  27. Manly GT, Pitts LH, Morabito D, Doyle CA, Gibson J, Gimbel M, Hopf HW, Knodson M (1999) Brain tissue oxygenation during hemorrhagic shock, resuscitation, and alterations in ventilation. J Trauma 46:261–267

    PubMed  Google Scholar 

  28. May JW, Halls MJ (1985) Thermocouple probe monitoring for free tissue transfer, replantation, and revascularization procedures. Clin Plast Surg 12:197–207

    PubMed  Google Scholar 

  29. May JW Jr, Chait LA, O'Brian BM, Hurley JV (1978) The no-reflow Phenomenon in experimental free flaps. Plast Reconstr Surg 61:256–267

    PubMed  Google Scholar 

  30. Neligan PC (1993) Monitoring techniques for the detection of flow failure in the postoperative period. Microsurgery 14:162–164

    CAS  PubMed  Google Scholar 

  31. Place MJ, Witt P, Hendricks D (1996) Cutaneous blood-flow patterns in free flaps determined by laser Doppler flowmetry. J Reconstr Microsurg 12:355–358

    CAS  PubMed  Google Scholar 

  32. Schuurmann AH, Bos KE, van Nus YH (1987) Laser Doppler bone probe in vascularized fibula transfers: a preliminary report. Microsurgery 8:186–189

    PubMed  Google Scholar 

  33. Seres L, Makula E, Morvay Z, Borbely L (2002) Color Doppler ultrasound for monitoring free flaps in the head and neck region. J Craniofac Surg 13:75–78

    PubMed  Google Scholar 

  34. Serletti JM, Moran SL, Orlando GS, O'Connor T, Herrera HR (1998) Urokinase protocol for free-flap salvage following prolonged venous thrombosis. Plast Reconstr Surg 102:1947–1953

    CAS  PubMed  Google Scholar 

  35. Smith AR, Sonneveld GJ, Kort WJ, van der Meulen JC (1983) Clinical application of transcutaneous oxygen measurements in replantation surgery and free tissue transfer. J Hand Surg [Am]:139–145

  36. Stack BC, Futran ND, Ridley MB, Schultz S, Sillman JS (1995) Signal averaging and waveform analysis of laser Doppler flowmetry monitoring of porcine myocutaneous flaps. I. Acute assessment of flap viability. Otolaryngol Head Neck Surg 113:550–557

    PubMed  Google Scholar 

  37. Strauß JM, Neukam FW, Krohn S, Schmelzeisen R, Borchard F (1994) Postoperative Überwachung mikrovaskulärer Lappenplastiken mit der Pulsoximetrie—erste Erfahrungen. Handchir Mikrochir Plast Chir 26:80

    PubMed  Google Scholar 

  38. Tsai T, Bennett DL, Pederson WC, Matiko J (1988) Complications and vascular salvage of free-tissue transfer to the extremities. Plast Reconstr Surg 82:1022–1026

    CAS  PubMed  Google Scholar 

  39. Tsuzuki KI, Yanai A, Bandoh Y (1990) A contrivance for monitoring skin flaps with a Doppler flowmeter. J Reconstr Microsurg 4:363–367

    Google Scholar 

  40. Udesen A, Lontoft E, Kristensen SR (2000) Monitoring of free TRAM flaps with microdialysis. J Reconstr Microsurg 16:101–106

    Article  CAS  PubMed  Google Scholar 

  41. Valadka AB, Gopinath SP, Contant CF, Uzura M, Robertson CS (1998) Relationship of brain tissue PO2 to outcome after severe head injury. Crit Care Med 26:1576–1581

    CAS  PubMed  Google Scholar 

  42. Wechselberger G, Rumer A, Schoeller T, Schwabegger A, Ninkovic M, Anderl H (1997) Free flap monitoring with tissue-oxygen measurement. J Reconstr Microsurg 13:125:1997

    Google Scholar 

  43. Wolff KD, Kolberg A, Mansmann U (1998) Cutaneous hemoglobin oxygenation of different free flap donor sites. Plast Reconstr Surg 102:1537–1543

    CAS  PubMed  Google Scholar 

  44. Yamamoto Y, Ohura T, Nohira K, Sugihara T, Minakawa H, Igawa H, Shintomi Y, Fujii H (1993) Laser flowgraphy: a new visual blood flow meter utilizing a dynamic laser speckle effect. Plast Reconstr Surg 91:884–894

    CAS  PubMed  Google Scholar 

  45. Yoshino K, Nara S, Endo M, Kamata N (1996) Intraoral free flap monitoring with a laser Doppler flowmetry. Microsurgery 17:37–40

    Google Scholar 

  46. Yuen JC, Feng Z (1998) Reduced cost of extremity free flap monitoring. Ann Plast Surg 41:36–40

    CAS  PubMed  Google Scholar 

  47. Yuen JC, Feng Z (2000) Monitoring free flaps using the laser Doppler flowmeter: five-year experience. Plast Reconstr Surg 55:105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.-P. Kamolz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamolz, LP., Lanmüller, H., Aszmann, O.C. et al. Continuous free flap monitoring: a modification of the Licox catheter probe system. Eur J Plast Surg 26, 140–143 (2003). https://doi.org/10.1007/s00238-003-0521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00238-003-0521-x

Keywords

Navigation