Skip to main content
Log in

Optimization of Electric Pulse Amplitude and Frequency In Vitro for Low Voltage and High Frequency Electrochemotherapy

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

During standard electrochemotherapy (ECT), using a train of 1,000 V/cm amplitude rectangular pulses with 1 Hz frequency, patients experience an unpleasant sensation and slight edema. According to the patients, muscle contractions provoked by high amplitude (about 1,000 V/cm) and low repetition frequency (1 Hz) pulses are the most unpleasant and painful sensations. Recently, ECT using low voltage and higher repetition frequency (LVHF) has been shown to be an effective tool for inhibiting tumor growth. The aim of the present study was to optimize electric pulse amplitude and repetition frequency for LVHF ECT by sampling the different sets of pulse parameters on cell viability and permeabilization. In ECT, a reversible effect based on high permeabilization is desirable. For this purpose, we used bleomycin to evaluate the permeabilization of K562 and MIA-PACA2 cells caused by low voltage (50–150 V/cm) and higher repetition frequency (4–6 kHz) electric pulses. We show that the reversible effect with electropermeabilization of the cells caused by LVHF ECT is accessible; this interaction is more effective for electric pulses with 70 V/cm amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antov Y, Barbul A, Korenstein R (2004) Electroendocytosis: stimulation of adsorptive and fluid-phase uptake by pulsed low electric fields. Exp Cell Res 297(2):348–362. doi:10.1016/j.yexcr.2004.03.027

    Article  CAS  PubMed  Google Scholar 

  • Antov Y, Barbul A, Mantsur H, Korenstein R (2005) Electroendocytosis: exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys J 88(3):2206–2223. doi:10.1529/biophysj.104.051268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cemazer M, Jarm T, Miklavcic D, Lebar A, Ihan A, Kopitar N, Sersa G (1998) Electrosensitmty of various tumor-cell lines in vitro. Elecfro Magnetobiol 17(2):263–272. http://lbk.fe.uni-lj.si/pdfs/em1998mc.pdf

    Google Scholar 

  • Chen C, Smye S, Robinson M, Evans J (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44(1–2):5–14

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Evans JA, Robinson MP, Smye SW, O’Toole P (2010) Electroporation of cells using EM induction of ac fields by a magnetic stimulator. Phys Med Biol 55(4):1219–1229. doi:10.1088/0031-9155/55/4/021

    Article  CAS  PubMed  Google Scholar 

  • Entin I, Plotnikov A, Korenstein R, Keisari Y (2003) Tumor growth retardation, cure, and induction of antitumor immunity in B16 Melanoma-bearing mice by low electric field-enhanced chemotherapy. Clin Cancer Res 9(8):3190–3197

    CAS  PubMed  Google Scholar 

  • Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177(4):437–447

    Article  CAS  PubMed  Google Scholar 

  • Golberg A, Laufer S, Rabinowitch HD, Rubinsky B (2011) In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance. Phys Med Biol 56(4):951–963

    Article  CAS  PubMed  Google Scholar 

  • Gothelf A, Mir L, Gehl J (2003) Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev 29:371–387

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi A, Nikaido T, Mitsushita J, Toki T, Konishi I, Fujii S (2000) Enhancement of antitumor effect of bleomycin by low-voltage in vivo electroporation: a study of human uterine leiomyosarcomas in nude mice. Int J Cancer 88(4):640–644.

    Article  CAS  PubMed  Google Scholar 

  • Ikehara T, Yamaguchi H, Hosokawa K, Houchi H, Park KH, Minakuchi K, Kashimoto H, Kitamura M, Kinouchi Y, Yoshizaki K, Miyamoto H (2005) Effects of a time-varying strong magnetic field on transient increase in Ca2+ release induced by cytosolic Ca2+ in cultured pheochromocytoma cells. Biochimica et Biophysica Acta (BBA) 1724(1):8–16. doi:10.1016/j.bbagen.2005.03.008

    Article  CAS  Google Scholar 

  • Kotnik T, Mir LM, Flisar K, Puc M, Miklavčič D (2001) Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses: part I. Increased efficiency of permeabilization. Bioelectrochemistry 54(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Kotnik T, Kramar P, Pucihar G, Miklavcic D (2012) Cell membrane electroporation: Part 1: the phenomenon. Electr Insulation Mag IEEE 28(5):14–23

    Article  Google Scholar 

  • Lebar A, Troiano G, Tung L, Miklavcic D (2002a) Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers. IEEE Trans Nanobiosci 1:116–121

    Article  Google Scholar 

  • Lebar AM, Sersa G, Kranjc S, Groselp A, Vcic DM (2002b) Optimisation of pulse parameters in vitro for in vivo electrochemotherapy. Anticancer Res 22:1731–1736

    PubMed  Google Scholar 

  • Mansourian M, Firoozabadi S, Shankayi Z, Hassan Z (2013) Magnetic fields with frequency of 217 Hz can reduce cell apoptosis caused by electrochemotherapy. Electromagn Biol Med 32(1):70–78

    Article  CAS  PubMed  Google Scholar 

  • Mikirova N, Jackson JA, Casciari JJ, Riordan HD (2001) The effect of alternating magnetic field exposure and vitamin C on cancer cells. J Orthomol Med 16(3):177–182

    Google Scholar 

  • Miklavčič D, Pucihar G, Pavlovec M, Ribarič S, Mali M, Maček-Lebar A, Petkovšek M, Nastran J, Kranjc S, Čemažar M, Serša G (2005) The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry 65(2):121–128. doi:10.1016/j.bioelechem.2004.07.004

    Article  PubMed  Google Scholar 

  • Mir L (2006) Bases and rationale of the electrochemotherapy. EJC Suppl 4:38–44

    Article  Google Scholar 

  • Mir L, Gehl J, Sersa G, Collins C, Garbay J, Billard V, Geertsen P, Rudolf Z (2006) Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or noninvasive electrodes. EJC Suppl 4:14–25

    Article  CAS  Google Scholar 

  • Pucihar G, Krmelj J, Rebersek M, Napotnik TB, Miklavcic D (2011) Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng 58(11):3279–3288

    Google Scholar 

  • Pucihar G, Mir LM, Miklavčič D (2002) The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry 57(2):167–172. doi:10.1016/S1567-5394(02)00116-0

    Article  CAS  PubMed  Google Scholar 

  • Rols MP, Teissié J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75(3):1415–1423

    Google Scholar 

  • Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M (2008) Electrochemotherapy in treatment of tumours. Eur J Surg Oncol 34(2):232–240. doi:10.1016/j.ejso.2007.05.016

    Article  CAS  PubMed  Google Scholar 

  • Sersa G, Kranjc S, Scancar J, Krzan M, Cemazar M (2010) Electrochemotherapy of mouse sarcoma tumors using electric pulse trains with repetition frequencies of 1 Hz and 5 kHz. J Membr Biol 236(1):155–162. doi:10.1007/s00232-010-9268-z

    Article  CAS  PubMed  Google Scholar 

  • Sersa G, Cufer T, Paulin SM, Cemazar M, Snoj M (2012) Electrochemotherapy of chest wall breast cancer recurrence. Cancer Treat Rev 38(5):379–386. doi:10.1016/j.ctrv.2011.07.006

    Article  PubMed  Google Scholar 

  • Shankayi Z, Firoozabadi S (2011) Tumor growth inhibited by low-voltage amplitude and 5-kHz frequency electrochemotherapy. J Membr Biol 244(3):121–128

    Article  CAS  PubMed  Google Scholar 

  • Shankayi Z, Firoozabadi S (2012) Antitumor efficiency of electrochemotherapy by high and low frequencies and repetitive therapy in the treatment of invasive ductal carcinoma in Balb/c mice. Cell J (Yakhteh) 15(2):110–115

    Google Scholar 

  • Shankayi Z, Firoozabadi S, Hassan Z (2010) The effect of rectangular electric pulse number in electrochemotherapy by low voltage and high frequency on breast tumors in Balb/c mice. Cell J (Yakhteh) 12(3):381–384

    Google Scholar 

  • Shankayi Z, Firoozabadi S, Hassan Z (2012) Comparison of low voltage amplitude electrochemotherapy with 1 Hz and 5 kHz frequency in volume reduction of mouse mammary tumor in Balb/c mice. Koomesh 13(4):486–490

    Google Scholar 

  • Shankayi Z, Firoozabadi S, Mansourian M (2013) The effect of pulsed magnetic field on the molecular uptake and medium conductivity of leukemia cell. Cell Biochem Biophys 65(2):211–216

    Article  CAS  PubMed  Google Scholar 

  • Silve A, Mir L (2011) Cell electropermeabilization and cellular uptake of small molecules: the electrochemotherapy concept. In: Kee S, Gehl J, Lee E (eds) Clinical aspects of electroporation. Springer, New York, pp 69–82

    Chapter  Google Scholar 

  • Silve A, Leray I, Mir L (2011) Demonstration of cell membrane permeabilization to medium-sized molecules caused by a single 10 ns electric pulse. Bioelechemistry 87:260–264

    Article  Google Scholar 

  • Teissié J, Escoffre J, Rols M, Golzio M (2008) Time dependence of electric field effects on cell membranes: a review for a critical selection of pulse duration for therapeutical applications. Radiol Oncol 42:196–206. doi:10.2478/v10019-008-0016-2

    Article  Google Scholar 

  • Tofani S, Barone D, Berardelli M, Berno E, Cintorino M, Foglia L, Ossola P, Ronchetto F, Toso E, Eandi M (2003) Static and ELF magnetic fields enhance the in vivo anti-tumor efficacy of cis-platin against lewis lung carcinoma, but not of cyclophosphamide against B16 melanotic melanoma. Pharmacol Res 48(1):83–90. doi:10.1016/S1043-6618(03)00062-8

    CAS  PubMed  Google Scholar 

  • Towhidi L, Firoozabadi SM, Mozdarani H, Miklavcic D (2012) Lucifer yellow uptake by CHO cells exposed to magnetic and electric pulses. Radiol Oncol 46(2):119–125

    Article  PubMed Central  PubMed  Google Scholar 

  • Zupanic A, Ribaric S, Miklavcic D (2007) Increasing the repetition frequency of electric pulse delivery reduces unpleasant sensations that occur in electrochemotherapy. Neoplasma 54:246–250

    CAS  PubMed  Google Scholar 

  • Zupanic A, Kos B, Miklavcic D (2012) Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 57:5425–5440

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Tarbiat Modaresm University as part of the requirements of a PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. P. Firoozabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankayi, Z., Firoozabadi, S.M.P. & Hassan, Z.S. Optimization of Electric Pulse Amplitude and Frequency In Vitro for Low Voltage and High Frequency Electrochemotherapy. J Membrane Biol 247, 147–154 (2014). https://doi.org/10.1007/s00232-013-9617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9617-9

Keywords

Navigation