Skip to main content
Log in

Mathematical Modeling of a Carrier-Mediated Transport Process in a Liquid Membrane

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

An analysis of the reaction diffusion in a carrier-mediated transport process through a membrane is presented. A simple approximate analytical expression of concentration profiles is derived in terms of all dimensionless parameters. Furthermore, in this work we employ the homotopy perturbation method to solve the nonlinear reaction–diffusion equations. Moreover, the analytical results have been compared to the numerical simulation using the Matlab program. The simulated results are comparable with the appropriate theories. The results obtained in this work are valid for the entire solution domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anitha S, Subbiah A, Subramaniam S, Rajendran L (2011) Analytical solution of amperometric enzymatic reactions based on homotopy perturbation method. Electrochim Acta 56:3345–3352

    Article  Google Scholar 

  • Baker R, Blume I (1990) Coupled transport membranes. In: Porter M (ed) Handbook of industrial membrane technology. Noyes Publications, Park Ridge, NJ, pp 511–558

    Google Scholar 

  • Barbero AJ, Manzanares JA, Mafe S (1995) A computational study of facilitated diffusion using the boundary element method. J Non-Equilib Thermodyn 20:332–341

    Article  CAS  Google Scholar 

  • Bartsch RA, Douglas JD (1996) Chemical separations with liquid membranes: an overview. ACS Symp Ser 642:1–10

    Article  CAS  Google Scholar 

  • de Gyves J, de San Miguel ER (1999) Metal ion separations by supported liquid membranes. Ind Eng Chem Res 38:2182–2202

    Article  Google Scholar 

  • Diederich F, Dick K (1984) A new water-soluble macrocyclic host of the cyclophane type: host–guest complexation with aromatic guests in aqueous solution and acceleration of the transport of arenes through an aqueous phase. J Am Chem Soc 106:8024–8036

    Article  CAS  Google Scholar 

  • Draxler J, Mar RJ (1986) Emulsion liquid membranes. Part I. Phenomenon and industrial application. Chem Eng Process 20:319–329

    Article  CAS  Google Scholar 

  • Fyles TM, Osa T, Atwood JL (1991) Inclusion aspects of membrane chemistry. Kluwer, Dordrecht, pp 59–110

  • Ghori QK, Ahmed M, Siddiqui AM (2007) Application of homotopy perturbation method to squeezing flow of a Newtonian fluid. Int J Nonlinear Sci Numer Simul 8:179–184

    Article  Google Scholar 

  • Goddard JD (1977) Further applications of carrier-mediated transport theory—a survey. Chem Eng Sci 32:795–809

    Article  CAS  Google Scholar 

  • He JH (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 178:257–262

    Article  Google Scholar 

  • He JH (2003a) Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput 135:73–79

    Article  Google Scholar 

  • He JH (2003b) A simple perturbation approach to the Blasius equation. Appl Math Comput 140:217–222

    Article  Google Scholar 

  • Izatt RM, Roper DK, Bruening RL, Lamb JD (1989) Macrocycle-mediated cation transport using hollow fiber supported liquid membranes. J Membr Sci 45:73–84

    Article  CAS  Google Scholar 

  • Kim JS, Kim SK, Ko JW, Kim ET, Yu SH, Cho MH, Kwon SG, Lee EH (2000) Selective transport of cesium ion in polymeric CTA membrane containing calixcrown ethers. Talanta 52:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kim SK, Cho MH, Lee SH, Kim JY, Kwon SG, Lee EH (2001) Permeation of silver ion through polymeric CTA membrane containing acyclic polyether bearing amide and amine end-group. Bull Korean Chem Soc 22:1076–1080

    CAS  Google Scholar 

  • Li SJ, Liu YX (2006) An improved approach to nonlinear dynamical system identification using PID neural networks. Int J Nonlinear Sci Numer Simul 7:177–182

    Google Scholar 

  • Loghambal S, Rajendran L (2010) Mathematical modeling of diffusion and kinetics of amperometric immobilized enzyme electrodes. Electrochim Acta 55:5230–5238

    Article  CAS  Google Scholar 

  • Lonsdale HK (1982) The growth of membrane technology. J Membr Sci 10:81–181

    Article  CAS  Google Scholar 

  • Matson SL, Herrick CS, Ward WJ (1977) Progress on the selective removal of H2S from gasified coal using an immobilized liquid membrane. Ind Eng Chem Process Des Dev 16:370–374

    Article  CAS  Google Scholar 

  • Meena A, Rajendran L (2010) Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear equations—homotopy perturbation approach. J Electroanal Chem 644:50–59

    Article  CAS  Google Scholar 

  • Mousa MM, Ragab SF (2008) Application of the homotopy perturbation method to linear and nonlinear Schrödinger equations. Z Naturforsch A 63:140–144

    CAS  Google Scholar 

  • Ozis T, Yildirim A (2007) A comparative study of He’s homotopy perturbation method for determining frequency–amplitude relation of a nonlinear oscillator with discontinuities. Int J Nonlinear Sci Numer Simul 8:243–248

    Article  Google Scholar 

  • Sastre AM, Kumar A, Shukla JP, Singh RK (1998) Improved techniques in liquid membrane separations: an overview. Sep Purif Methods 27:213–298

    Article  CAS  Google Scholar 

  • Schow AJ, Peterson RT, Lamb JD (1996) Polymer inclusion membranes containing macrocyclic carriers for use in cation separations. J Membr Sci 111:291–295

    Article  CAS  Google Scholar 

  • Schultz JS (1977) Carrier-mediated transport in liquid–liquid membrane systems. In: Li NN (ed) Recent developments in separation science. CRC Press, Cleveland, OH, pp 243–260

    Google Scholar 

  • Schultz JS, Goddard JD, Suchdeo SR (1974) Facilitated transport via carrier-mediated diffusion in membranes. Part I, Mechanistic aspects, experimental systems and characteristic regimes. AIChE J 20:417–445

    Article  CAS  Google Scholar 

  • Smith DR, Lander RJ, Quinn JA (1977) Carrier-mediated transport in synthetic membranes. In: Li NN (ed) Recent developments in separation science. CRC Press, Cleveland, OH, p 225

    Google Scholar 

  • Thiagarajan S, Meena A, Anitha S, Rajendran L (2011) Analytical expression of the steady-state catalytic current of mediated bioelectrocatalysis and the application of He’s homotopy perturbation method. J Math Chem 49:1727–1740

    Article  CAS  Google Scholar 

  • Thien MP, Hatton TA (1988) Liquid emulsion membranes and their applications in biochemical processing. Sep Sci Technol 23:819–853

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Council of Scientific and Industrial Research (01[2442]/10/EMR-II), Government of India. The authors also thank the secretary, The Madura College Board, and the principal, The Madura College, Madurai, Tamil Nadu, India, for their constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmanan Rajendran.

Appendices

Appendix 1: Approximate Analytical Solution of the Concentration Species Using the Homotopy Perturbation Method

In this appendix, we derive the solution of nonlinear reaction Eqs. 810 using He’s HPM. To illustrate the basic concepts of this method, we consider the following nonlinear differential equation (Ghori et al. 2007; Ozis and Yildirim 2007; Li and Liu 2006; Mousa and Ragab 2008):

$$L(u) + N(u) - f(r) = 0 $$
(16)

where L is a linear operator, N is a nonlinear operator and f(r) is a given continuous function. We construct a homotopy \(\Upomega \times [0,1] \to R\) which satisfies

$$(1 - p)\,\frac{{d^{2} C_{S}^{ * } \,}}{{dX^{2} }} + p(\frac{{d^{2} C_{S}^{ * } }}{{dX^{2} }} - MC_{S}^{ * } C_{L}^{ * } + NC_{LS}^{ * } ) = 0 $$
(17)
$$(1 - p)\,\frac{{d^{2} C_{L}^{ * } \,}}{{dX^{2} }} + p(\frac{{d^{2} C_{L}^{ * } }}{{dX^{2} }} - MC_{S}^{ * } C_{L}^{ * } + NC_{LS}^{ * } ) = 0 $$
(18)
$$(1 - p)\,(\frac{{d^{2} C_{LS}^{ * } }}{{dX^{2} }} - NC_{LS}^{ * } ) + p(\frac{{d^{2} C_{LS}^{ * } }}{{dX^{2} }} + MC_{S}^{ * } C_{L}^{ * } - NC_{LS}^{ * } ) = 0 $$
(19)

Suppose the approximate solutions of Eqs. 1719 have the form

$$\left\{ \begin{gathered} C_{S}^{ * } \, = \, C_{S0}^{ * } + \, pC_{S1}^{ * } \, + \, p^{2} C_{S2}^{ * } + \ldots \hfill \\ C_{L}^{ * } \, = \, C_{L,\,0}^{ * } \, + \, pC_{L,\,1}^{ * } \, + \, p^{2} C_{L\,2}^{ * } + \ldots \hfill \\ C_{LS}^{ * } \, = \, C_{LS0}^{ * } + \, pC_{LS\,1}^{ * } + \, p^{2} C_{LS\,2}^{ * } + \ldots \hfill \\ \end{gathered} \right. $$
(20)

Substituting Eq. 20 into Eqs. 1719 and equating the terms with the identical powers of p, we obtain

$$p^{0} :\frac{{d^{2} C_{S,\,0}^{ * } }}{{dX^{2} }} = 0 $$
(21)
$$p^{1} :\frac{{d^{2} C_{S,\,1}^{ * } }}{{dX^{2} }} - MC_{S,\,1}^{ * } C_{L,\,0}^{ * } + NC_{LS,\,0}^{ * } = 0 $$
(22)

and

$$p^{0} :\frac{{d^{2} C_{L,\,0}^{ * } }}{{dX^{2} }} = 0 $$
(23)
$$p^{1} :\frac{{d^{2} C_{L,\,1}^{ * } }}{{dX^{2} }} - MC_{S,\,0}^{ * } C_{L,\,0}^{ * } \, + NC_{LS,\,0}^{ * } = 0 $$
(24)

and

$$p^{0} :\frac{{d^{2} C_{LS,\,0}^{ * } }}{{dX^{2} }} - NC_{LS,\,0}^{ * } = 0 $$
(25)
$$p^{1} :\frac{{d^{2} C_{LS,\,1}^{ * } }}{{dX^{2} }} + MC_{S,\,0}^{ * } C_{L,\,0}^{ * } - NC_{LS,\,1}^{ * } = 0 $$
(26)

The initial conditions are as follows:

$$C_{S,0}^{ * } (X = 0) = 1; \, C_{S,0}^{ * } (X = 1) = 0 \, $$
(27)
$$C_{{L,{ 0}}}^{ * } (X = 0) = 0; \, C_{{L,{ 0}}}^{ * } (X = 1) = 1 \, $$
(28)
$$C_{{LS,{ 0}}}^{ * } (X = 0) = 1; \, C_{{LS,{ 0}}}^{ * } (X = 1) = 0 \, $$
(29)

and

$$C_{{S,{\text{ i}}}}^{ * } (X = 0 )= 0; \, C_{{S,{\text{ i}}}}^{ * } (X = 1 )= 0\;{\text{for all }}i = { 1},{ 2},{ 3} \ldots $$
(30)
$$C_{{L,{\text{ i}}}}^{ * } (X = 0 )= 0; \, C_{{L,{\text{ i}}}}^{ * } (X = 1 )= 0\;{\text{for all }}i = { 1},{ 2},{ 3} \ldots $$
(31)
$$C_{{LS,{\text{ i}}}}^{ * } (X = 0 )= 0; \, C_{{LS,{\text{ i}}}}^{ * } (X = 1 )= 0\;{\text{for all }}i = { 1},{ 2},{ 3} \ldots $$
(32)

Solving Eqs. 21, 23 and 25 and using the boundary condition Eqs. 2729, we get

$$C_{S,\,0}^{ * } (X) = 1 - X $$
(34)
$$C_{L,\,0}^{ * } (X) = X $$
(35)
$$C_{LS,\,0}^{*} (X) = \frac{\sinh \sqrt N (1 - X)}{\sinh \sqrt N } $$
(36)

Substituting the above values of \(C_{S,0}^{*} ,\,C_{L,0}^{*}\) and \(C_{LS,\,0}^{ * }\) and solving Eqs. 22, 24 and 26 using the boundary condition Eqs. 3032, we obtain the following results:

$$C_{S,1}^{*} (X) = {\kern 1pt} M\left( {\frac{{X^{3} }}{6} - \frac{{X^{4} }}{12}} \right) - \frac{\sinh \sqrt N (1 - X)}{\sinh \sqrt N } - {\kern 1pt} \left( {\frac{M}{2} + 1} \right)X + 1 $$
(37)
$$C_{L,1}^{*} (X) = {\kern 1pt} M\left( {\frac{{X^{3} }}{6} - \frac{{X^{4} }}{4}} \right) - \frac{\sinh \sqrt N (1 - X)}{\sinh \sqrt N } - {\kern 1pt} \left( {\frac{M}{2} + 1} \right)X + 1 $$
(38)
$$C_{L,S,1}^{*} (X)\, = \,{\kern 1pt} \frac{2M}{{N^{2} \sinh \sqrt N }}\left( {\sinh \sqrt N (1 - X) + \sinh \sqrt N X} \right) + \frac{M}{N}\left( {X - X^{2} - \frac{2}{N}} \right) $$
(39)

Adding Eqs. 34 and 37, we get Eq. 13 in the text. Similarly, we can get Eqs. 14 and 15.

Appendix 2: Matlab Program to Find the Numerical Solution of Equations 810

function pdex4

m = 0;

x = linspace(0,1);

t = linspace(0,1000);

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);

u1 = sol(:,:,1);

u2 = sol(:,:,2);

u3 = sol(:,:,3);

figure

plot(x,u1(end,:))

title(‘u1(x,t)’)

% ———————————————–

function (c,f,s) = pdex4pde(x,t,u,DuDx)

M = 0.1;

N = 1;

c = (1; 1; 1);

f = (1; 1; 1).* DuDx;

F1 = –M*u(1)*u(2) + N*u(3);

F2 = –M*u(1)*u(2) + N*u(3);

F3 = M*u(1)*u(2)–N*u(3);

s = (F1; F2; F3);

% ———————————————–

function u0 = pdex4ic(x);

u0 = (1; 0;0);

% ———————————————–

function (pl,ql,pr,qr) = pdex4bc(xl,ul,xr,ur,t)

pl = (ul(1)–1; ul(2);ul(3)–1);

ql = (0;0; 0);

pr = (ur(1); ur(2)–1; ur(3));

qr = (0; 0; 0);

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesan, S., Anitha, S., Subbiah, A. et al. Mathematical Modeling of a Carrier-Mediated Transport Process in a Liquid Membrane. J Membrane Biol 246, 435–442 (2013). https://doi.org/10.1007/s00232-013-9555-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9555-6

Keywords

Navigation