Skip to main content
Log in

K+ Channels of Squid Giant Axons Open by an Osmotic Stress in Hypertonic Solutions Containing Nonelectrolytes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

In hypertonic solutions made by adding nonelectrolytes, K+ channels of squid giant axons opened at usual asymmetrical K+ concentrations in two different time courses; an initial instantaneous activation (I IN) and a sigmoidal activation typical of a delayed rectifier K+ channel (I D). The current–voltage relation curve for I IN was fitted well with Goldman equation described with a periaxonal K+ concentration at the membrane potential above −10 mV. Using the activation–voltage curve obtained from tail currents, K+ channels for I IN are confirmed to activate at the membrane potential that is lower by 50 mV than those for I D. Both I IN and I D closed similarly at the holding potential below −100 mV. The logarithm of I IN/I D was linearly related with the osmolarity for various nonelectrolytes. Solute inaccessible volumes obtained from the slope increased with the nonelectrolyte size from 15 to 85 water molecules. K+ channels representing I D were blocked by open channel blocker tetra-butyl ammonium (TBA) more efficiently than in the absence of I IN, which was explained by the mechanism that K+ channels for I D were first converted to those for I IN by the osmotic pressure and then blocked. So K+ channels for I IN were suggested to be derived from the delayed rectifier K+ channels. Therefore, the osmotic pressure is suggested to exert delayed-rectifier K+ channels to open in shrinking rather hydrophilic flexible parts outside the pore than the pore itself, which is compatible with the recent structure of open K+ channel pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Armstrong CM, Hille B (1998) Voltage-gated ion channels and electrical excitability. Neuron 20:371–380

    Article  PubMed  CAS  Google Scholar 

  • Clay JR (1991) A paradox concerning ion permeation of the delayed rectifier potassium ion channel in squid giant axons. J Physiol 444:499–511

    PubMed  CAS  Google Scholar 

  • Clay JR (2000) Determining K+ channel activation curves from K+ channel currents. Eur Biophys J 29:555–557

    Article  PubMed  CAS  Google Scholar 

  • Clay JR, Kuzirian AM (2000) Localization of voltage-gated K+ channels in squid giant axons. J Neurobiol 45:172–184

    Article  PubMed  CAS  Google Scholar 

  • Conti F, Inoue I, Kukita F, Stühmer W (1984) Pressure dependence of sodium gating currents in the squid giant axon. Eur Biophys J 11:137–147

    Article  PubMed  CAS  Google Scholar 

  • Cuello LG, Jogini V, Cortes DM, Perozo E (2010) Structural mechanism of C-type inactivation in K+ channels. Nature 466:203–208

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conductance and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • French RJ, Shoukimas JJ (1981) Blockage of squid axon potassium conductance by internal tetra-N-alkylammonium ions of various size. Biophys J 34:271–291

    Article  PubMed  CAS  Google Scholar 

  • Gilly WF, Armstrong CM (1982) Divalent cations and the activation kinetics of potassium channels in squid giant axons. J Gen Physiol 79:965–996

    Article  PubMed  CAS  Google Scholar 

  • Goldstein SAN, Bockenhauer D, O’Kelly I, Zilberberg N (2008) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184

    Article  Google Scholar 

  • Hamill OP (2006) Twenty odd years of stretch-sensitive channels. Pflügers Arch 453:333–351

    Article  PubMed  CAS  Google Scholar 

  • Hammami S, Willumsen NJ, Olsen HL, Morera FJ, Lattore R, Klaerke DA (2009) Cell volume and membrane stretch independently control K+ channel activity. J Physiol 587:2225–2231

    Article  PubMed  CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) Current carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472

    PubMed  CAS  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003a) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003b) The principle of gating charge movement in a voltage-dependent K channel. Nature 423:42–48

    Article  PubMed  CAS  Google Scholar 

  • Kukita F (1982) Properties of sodium and potassium channels of the squid giant axon far below 0°C. J Membr Biol 68:151–160

    Article  PubMed  CAS  Google Scholar 

  • Kukita F (1988) Removal of periaxonal potassium accumulation in a squid giant axon by outward osmotic water flow. J Physiol 399:647–656

    PubMed  CAS  Google Scholar 

  • Kukita F (1997) Solvent-dependent rate-limiting steps in the conformational change of sodium channel gating in squid giant axons. J Physiol 498:109–133

    PubMed  CAS  Google Scholar 

  • Kukita F (2000) Solvent effects on squid sodium channels are attributable to movements of a flexible protein structure in gating currents and to hydration in a pore. J Physiol 522:357–373

    Article  PubMed  CAS  Google Scholar 

  • Kukita F (2001) K+ channel opened by a water activity decrease. Jpn J Physiol 51:183

    Google Scholar 

  • Kukita F, Mitaku S (1993) Kinetic analysis of the denaturation process by alcohols of sodium channels in squid giant axon. J Physiol 463:523–543

    PubMed  CAS  Google Scholar 

  • Kukita F, Yamagishi S (1976) Prolongation of the action potential of squid giant axons in viscous solutions. Proc Jpn Acad 52:323–326

    CAS  Google Scholar 

  • Kukita F, Yamagishi S (1979) Slowing of the time course of the excitation of squid giant axons in viscous solutions. J Membr Biol 47:303–325

    Article  PubMed  CAS  Google Scholar 

  • Kukita F, Yamagishi S (1983) Effects of outward water flow on potassium currents in a squid giant axon. J Membr Biol 75:33–44

    Article  PubMed  CAS  Google Scholar 

  • Li W, Aldrich RW (2004) Unique inner pore properties of BK channels revealed by quaternary ammonium block. J Gen Physiol 124:43–57

    Article  PubMed  CAS  Google Scholar 

  • Rand RP (2004) Probing the role of water in protein conformation and function. Phil Trans R Soc Lond B 359:1277–1285

    Article  CAS  Google Scholar 

  • Rosenthal JJC, Vickery RG, Gilly WF (1996) Molecular identification of SqKv1A. A candidate for the delayed rectifier K channel in squid giant axon. J Gen Physiol 108:207–219

    Article  PubMed  CAS  Google Scholar 

  • Schoenmakers ThJM, Vaudry H, Cazin L (1995) Osmo- and mechanosensitivity of the transient outward K+ current in mammalian neuronal cell line. J Physiol 489:419–430

    PubMed  CAS  Google Scholar 

  • Schoppa NE, Sigwoth FJ (1998) Activation of Shaker potassium channels. I. Characterization of voltage-dependent transitions. J Gen Physiol 111:271–294

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H, Oiki S (2004) Asymmetric effect of nonelectrolytes on the gating of KcsA channel. Jpn J Physiol 54:s68

    Google Scholar 

  • Sokolov S, Scheuer T, Cateral WA (2007) Gating pore current in an inherited ion channelopathy. Nature 446:76–78

    Article  PubMed  CAS  Google Scholar 

  • Starace DM, Bezanilla F (2004) A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427:548–553

    Article  PubMed  CAS  Google Scholar 

  • Starkus JG, Schlief T, Rayner MD, Heinemann SH (1995) Unilateral exposure of Shaker B potassium channels to hyperosmolar solutions. Biophys J 69:860–872

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T (1981) Gels. Sci Am 244:124–138

    Article  PubMed  CAS  Google Scholar 

  • Tombola F, Pathak MM, Isacoff EY (2005) Voltage-sensing arginines in potassium channel permeate and occlude cation-selective pores. Neuron 45:379–388

    Article  PubMed  CAS  Google Scholar 

  • Tombola F, Pathak MM, Gorostiza P, Isacoff EY (2007) The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature 445:546–549

    Article  PubMed  CAS  Google Scholar 

  • Van t’Hoff JH (1901) Osmotic pressure and chemical equilibrium. Nobel Prize Lecture in Chemistry. http://nobelprize.org/nobel_prizes/chemistry/laureates/1901/hoff-lecture.pdf

  • Wagoner PK, Oxford GS (1987) Cation permeation through the voltage-dependent potassium channel in the squid axon. Characteristics and mechanisms. J Gen Physiol 90:261–290

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Bondarenko VE, Qu Y, Morales MJ, Rasmusson RL, Strauss HC (2004) Activation properties of Kv4.3 channels: time, voltage and [K]O dependence. J Physiol 557:705–717

    Article  PubMed  CAS  Google Scholar 

  • White MM, Bezanilla F (1985) Ionic and gating current studies. J Gen Physiol 85:539–554

    Article  PubMed  CAS  Google Scholar 

  • Yahannan S, Hu Y, Zhou Y (2007) Crystallographic study of the tetrabutylammonium block to the KcsA K+ channel. J Mol Biol 366:806–814

    Article  Google Scholar 

  • Zagotta C, Hosni T, Deadman J, Aldrich RW (1994) Shaker potassium channel gating II: transitions in the activation pathway. J Gen Physiol 103:279–319

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Sigworth FJ (1998) Intermediate conductances during deactivation of heteromultimeric Shaker potassium channels. J Gen Physiol 112:457–474

    Article  Google Scholar 

  • Zimmerberg J, Parsegian VA (1986) Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature 323:36–39

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg J, Bezanilla F, Parsegian VA (1990) Solute inaccessible aqueous volume change during opening of the potassium channel of the squid giant axon. Biophys J 57:1049–1064

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank Y. Nitani for collecting squid. I also thank members of the National Institute for Physiological Sciences for supporting this work. This work was supported by a grant from JSPS (12670053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Kukita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukita, F. K+ Channels of Squid Giant Axons Open by an Osmotic Stress in Hypertonic Solutions Containing Nonelectrolytes. J Membrane Biol 242, 119–135 (2011). https://doi.org/10.1007/s00232-011-9383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9383-5

Keywords

Navigation