Skip to main content

Advertisement

Log in

Regulation of Human and Pig Renal Na+,K+-ATPase Activity by Tyrosine Phosphorylation of Their α1-Subunits

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Modulation of the physiologically influential Na+,K+-ATPase is a complex process involving a wide variety of factors. To determine the possible effects of the protein tyrosine phosphatase (PTP) inhibitors dephostatin and Et-3,4-dephostatin on human and pig, renal cells and enzymatic extracts, we treated our samples (15 min–24 h) with those PTP inhibitors (0–100 μM). PTP inhibitors were found to possess a concentration-dependent inhibition of Na+,K+-ATPase activity in both human and pig samples. The inhibition was similarly demonstrated on all cellular, microsomal fraction and purified Na+,K+-ATPase levels. Despite rigorous activity recovery attempts, the PTP inhibitors’ effects were sustained on Na+,K+-ATPase activity. Western blotting experiments revealed the expression of both α1- and β1-subunits in both human and pig tissues. α1-Subunits possessed higher tyrosine phosphorylation levels with higher concentrations of PTP inhibitors. Meanwhile, serine/threonine residues of both α1- and β1-subunits demonstrated diminished phosphorylation levels upon dephostatin treatment. Accordingly, we provide evidence that Na+,K+-ATPase can be regulated through tyrosine phosphorylation of primarily their α1-subunits, using PTP inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aperia A, Ibarra F, Svensson LB, Klee C, Greengard P (1992) Calcineurin mediates alpha-adrenergic stimulation of Na+,K +-ATPase activity in renal tubule cells. Proc Natl Acad Sci USA 89:7394–7397

    Article  CAS  PubMed  Google Scholar 

  • Beguin P, Beggah AT, Chibalin AV, Burgener-Kairuz P, Jaisser F, Mathews PM, Rossier BC, Cotecchia S, Geering K (1994) Phosphorylation of the Na,K-ATPase alpha-subunit by protein kinase A and C in vitro and in intact cells. Identification of a novel motif for PKC-mediated phosphorylation. J Biol Chem 269:24437–24445

    CAS  PubMed  Google Scholar 

  • Bertorello AM, Aperia A, Walaas SI, Nairn AC, Greengard P (1991) Phosphorylation of the catalytic subunit of Na+,K+-ATPase inhibits the activity of the enzyme. Proc Natl Acad Sci USA 88:11359–11362

    Article  CAS  PubMed  Google Scholar 

  • Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    CAS  PubMed  Google Scholar 

  • Blot-Chabaud M, Coutry N, Laplace M, Bonvalet J-P, Farman N (1996) Role of protein phosphatase in the regulation of Na+-K+-ATPase by vasopressin in the cortical collecting duct. J Membr Biol 153:233–239

    Article  CAS  PubMed  Google Scholar 

  • Carranza ML, Feraille E, Favre H (1996a) Protein kinase C-dependent phosphorylation of the Na+-K+-ATPase alpha-subunit in rat kidney cortical tubules. Am J Physiol 271:C136–C143

    CAS  PubMed  Google Scholar 

  • Carranza ML, Feraille E, Kiroytcheva M, Rousselot M, Favre H (1996b) Stimulation of ouabain-sensitive 86Rb+ uptake and Na+,K+-ATPase α-subunit phosphorylation by a cAMP-dependent signaling pathway in intact cells from rat kidney cortex. FEBS Lett 396:309–314

    Article  CAS  PubMed  Google Scholar 

  • Chibalin AV, Vasilets LA, Hennekes H, Pralong D, Geering K (1992) Phosphorylation of Na,K-ATPase alpha-subunits in microsomes and in homogenates of Xenopus oocytes resulting from the stimulation of protein kinase A and protein kinase C. J Biol Chem 267:22378–22384

    CAS  PubMed  Google Scholar 

  • Chifflet S, Torriglia A, Chiesa R, Tolosa S (1988) A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPase. Anal Biochem 168:1–4

    Article  CAS  PubMed  Google Scholar 

  • Doris PA, Bagrov AY (1998) Endogenous sodium pump inhibitors and blood pressure regulation: an update on recent progress. Proc Soc Exp Biol Med 218:156–167

    CAS  PubMed  Google Scholar 

  • Feraille E, Carranza ML, Rousselot M, Favre H (1997) Modulation of Na+,K+-ATPase activity by a tyrosine phosphorylation process in rat proximal convoluted tubule. J Physiol 498:99–108

    CAS  PubMed  Google Scholar 

  • Feraille E, Carranza ML, Gonin S, Beguin P, Pedemonte C, Rousselot M, Caverzasio J, Geering K, Martin PY, Favre H (1999) Insulin-induced stimulation of Na+,K+-ATPase activity in kidney proximal tubule cells depends on phosphorylation of the alpha-subunit at Tyr-10. Mol Biol Cell 10:2847–2859

    CAS  PubMed  Google Scholar 

  • Ferrandi M, Manunta P (2000) Ouabain-like factor: is this the natriuretic hormone? Curr Opin Nephrol Hypertens 9:165–171

    Article  CAS  PubMed  Google Scholar 

  • Fisone G, Cheng SX, Nairn AC, Czernik AJ, Hemmings HC Jr, Hoog JO, Bertorello AM, Kaiser R, Bergman T, Jornvall H (1994) Identification of the phosphorylation site for cAMP-dependent protein kinase on Na+,K+-ATPase and effects of site-directed mutagenesis. J Biol Chem 269:9368–9373

    CAS  PubMed  Google Scholar 

  • Hayashi Y, Kimimura M, Homareda H, Matsui H (1977) Purification and characteristics of (Na+,K+)-ATPase from canine kidney by zonal centrifugation in sucrose density gradient. Biochim Biophys Acta 482:185–196

    CAS  PubMed  Google Scholar 

  • Hernandez RJ (1992) Na+/K+-ATPase regulation by neurotransmitters. Neurochem Int 20:1–10

    Article  Google Scholar 

  • Horisberger J-D (2004) Recent insights into the structure and mechanism of the sodium pump. Physiology 19:377–387

    Article  CAS  PubMed  Google Scholar 

  • Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77:1311–1315

    Article  CAS  PubMed  Google Scholar 

  • Hunyady L, Merelli F, Baukal AJ, Balla T, Catt KJ (1991) Agonist-induced endocytosis and signal generation in adrenal glomerulosa cells. A potential mechanism for receptor-operated calcium entry. J Biol Chem 266:2783–2788

    CAS  PubMed  Google Scholar 

  • Imoto M, Kakeya H, Sawa T, Hayashi C, Hamada M, Takeuchi T, Umezawa K (1993) Dephostatin, a novel protein tyrosine phosphatase inhibitor produced by Streptomyces: I. Taxonomy, isolation, and characterization. J Antibiot 46:1342–1346

    CAS  PubMed  Google Scholar 

  • Jorgensen PL (1988) Purification of Na,K-ATPase. Enzyme sources, preparative problems and preparation from mammalian kidney. Methods Enzymol 156:29–42

    Article  CAS  PubMed  Google Scholar 

  • Kaplan JH (2002) Biochemistry of the Na,K-ATPase. Annu Rev Biochem 71:511–535

    Article  CAS  PubMed  Google Scholar 

  • Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275:C1–C24

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lecuona E, Garcia A, Sznajder JI (2000) A novel role for protein phosphatase 2A in the dopaminergic regulation of Na,K-ATPase. FEBS Lett 481:217–220

    Article  CAS  PubMed  Google Scholar 

  • Lecuona E, Dada LA, Sun H, Butti ML, Zhou G, Chew TL, Sznajder JI (2006) Na,K-ATPase α1-subunit dephosphorylation by protein phosphatase 2A is necessary for its recruitment to the plasma membrane. FASEB J 20:E2146–E2155

    Article  Google Scholar 

  • Lopina OD (2000) Na+,K+-ATPase: structure, mechanism, and regulation. Membr Cell Biol 13:721–744

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mallick BN, Adya HVA, Faisal M (2000) Norepinephrine-stimulated increase in Na+,K+-ATPase activity in the rat brain is mediated through α1A-adrenoceptor possibly by dephosphorylation of the enzyme. J Neurochem 74:1574–1578

    Article  CAS  PubMed  Google Scholar 

  • McDonough AA, Farely RA (1993) Regulation of Na,K-ATPase activity. Curr Opin Nephrol Hypertens 2:725–734

    Article  CAS  PubMed  Google Scholar 

  • Morioka M, Fukunaga K, Kawano T, Hasegawa S, Korematsu K, Kai K, Hamada J, Miyamoto E, Ushio Y (1998) Serine/threonine phosphatase activity of calcineurin is inhibited by sodium orthovanadate and dithiothreitol reverses the inhibitory effect. Biochem Biophys Res Commun 253:342–345

    Article  CAS  PubMed  Google Scholar 

  • Narkar V, Hussain T, Lokhandwala M (2002) Role of tyrosine kinase and p44/42 MAPK in D2-like receptor-mediated stimulation of Na+,K+-ATPase in kidney. Am J Physiol 282:F697–F702

    CAS  Google Scholar 

  • Ragolia L, Cherpalis B, Srinivasan M, Begum N (1997) Role of serine/threonine protein phosphatases in insulin regulation of Na+/K+-ATPase activity in cultured rat skeletal muscle cells. J Biol Chem 272:23653–23658

    Article  CAS  PubMed  Google Scholar 

  • Scheiner-Bois G (2002) The sodium pump, its molecular properties and mechanics of ion transport. Eur J Biochem 269:2424–2433

    Article  Google Scholar 

  • Suzuki T, Hiroki A, Watanabe T, Yamashita T, Takei I, Umezawa K (2001) Potentiation of insulin-related signal transduction by a novel protein-tyrosine phosphatase inhibitor, Et-3, 4-dephostatin, on cultured 3T3–L1 adipocytes. J Biol Chem 276:27511–27518

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi K, Suzuki K, Iida S (1982) Conformational change accompanying transition of ADP-sensitive phosphoenzyme to potassium-sensitive phosphoenzyme of (Na+ ,K+)-ATPase modified with N-[p-(2-benzimidazolyl)phenyl]maleimide. J Biol Chem 257:10659–10667

    CAS  PubMed  Google Scholar 

  • Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol 279:C541–C566

    CAS  Google Scholar 

  • Tonks NK, Diltz CD, Fischer EH (1988) Characterization of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem 263:6731–6737

    CAS  PubMed  Google Scholar 

  • Umezawa K, Kawakami M, Watanabe T (2003) Molecular design and biological activities of protein-tyrosine phosphatase inhibitors. Pharmacol Ther 99:15–24

    Article  CAS  PubMed  Google Scholar 

  • Wang XQ, Yu SP (2005) Novel regulation of Na+,K+-ATPase by Src tyrosine kinases in cortical neurons. J Neurochem 93:1515–1523

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Cai T (2003) Na+-K+-ATPase-mediated signal transduction: from protein interaction to cellular function. Mol Interv 3:157–168

    Article  CAS  PubMed  Google Scholar 

  • Yingst DR, Davis J, Schiebinger R (2000) Inhibitors of tyrosine phosphatases block angiotensin II inhibition of Na pump. Eur J Pharmacol 406:49–52

    Article  CAS  PubMed  Google Scholar 

  • Yu SP (2003) Na+,K+-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 66:1601–1609

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waleed El-Beialy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Beialy, W., Galal, N., Deyama, Y. et al. Regulation of Human and Pig Renal Na+,K+-ATPase Activity by Tyrosine Phosphorylation of Their α1-Subunits. J Membrane Biol 233, 119–126 (2010). https://doi.org/10.1007/s00232-010-9231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9231-z

Keywords

Navigation