Skip to main content
Log in

Gating and Conductance Changes in BK Ca Channels in Bilayers Are Reciprocal

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The energy associated with a mismatch between the hydrocarbon portions of a lipid bilayer and the hydrophobic regions of a transmembrane protein requires that one or both components deform in an attempt to minimize the energy difference. Transmembrane potassium channel subunits are composed of different structural motifs, each responsible for ion-selectivity, conductance and gating capabilities. Each has an inherent degree of flexibility commensurate with its amino acid composition. It is not clear, however, how each structural motif will respond to a fixed amount of distortion applied to the whole structure. We examined the single-channel conductance (Gc) and gating (open probability, P o) of single BKCa channels (hslo α-subunits) inserted into planar lipid bilayers containing 1,2-dioleoyl-3-phosphatidylethanolamine (DOPE) or DOPE with either 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or sphingomyelin (SPM) and 1-palmitoyl-2-oleoyl-3-phosphatidylethanolamine (POPE) with SPM. These latter three binary mixtures formed stable membranes with different distributions of thickness domains as determined by atomic force microscopy. Channels placed in each composition should be exposed to different amounts of distortion. BKCa channels forced into the DOPE/SPM bilayer containing lipid domains with two different thicknesses showed two distinct levels of Gc and Po. The alterations in Gc and Po were reciprocal. A larger conductance was accompanied by a smaller value for gating and vice versa. Channels forced into the POPE/SPM bilayer containing lipid domains with different thicknesses showed more than two distinct levels of Gc and Po. Channels placed in a uniform bilayer (DOPE/DOPC) showed a uniform distribution of conductance and activation. We conclude that both the inner and outer domains of the channel where these two channel functions are localized respond to deformation and that a fixed amount of distortion results in reciprocal changes in protein function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Ahring P.K., Strobaek D., Christophersen P., Olesen S.P., Johansen T.E. 1997. Stable expression of the human large-conductance Ca2+-activated K+ channel. FEBS Lett. 415:67–70

    Article  PubMed  CAS  Google Scholar 

  • Alvarez O. 1986. How to set up a bilayer system. In: Miller C. (ed). Ion Channel Reconstitution, Plenum Press, New York pp. 115–139

    Google Scholar 

  • Bell J.E., Miller C. 1984. Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum. Biophys. J. 45:279–287

    PubMed  CAS  Google Scholar 

  • Bers D.M., Patton C.W., Nuccitelli R. 1994. A practical guide to the preparation of Ca2+ buffers. In: Nuccitelli R. (ed). A Practical Guide to the Study of Calcium in Living Cells, Academic Press, New York pp. 3–29

    Google Scholar 

  • Bravo-Zehnder M., Orio P., Norambuena A., Wallner M., Meera P., Toro L., Latorre R., Gonzalez A. 2000. Apical sorting of a voltage- and Ca2+-activated K+ channel a-subunit in Madin-Darby canine kidney cells is independent of N-glycosylation. Proc. Natl. Acad. Sci. USA 97:13114–13119

    Article  PubMed  CAS  Google Scholar 

  • Brown D.A., London E. 2000. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275:17221–17224

    Article  PubMed  CAS  Google Scholar 

  • Cantor R.S. 1997. The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry 36:2339–2344

    Article  PubMed  CAS  Google Scholar 

  • Cantor R.S. 1999. Lipid composition and the lateral pressure profile in bilayers. Biophys. J. 76:2625–2639

    PubMed  CAS  Google Scholar 

  • Chu B., Dopico A.M., Lemos J.R., Treistman S.N. 1998. Ethanol potentiation of calcium-activated potassium channels reconstituted into planar lipid bilayers. Mol. Pharmacol. 54:397–406

    PubMed  CAS  Google Scholar 

  • Corey D.P., Garcia-Anoveros J., Holt J.R., Kwan K.Y., Lin S.Y., Vollrath M.A., Amalfitano A., Cheung E.L., Derfler B.H., Duggan A., Geleoc G.S., Gray P.A., Hoffman M.P., Rehm H.L., Tamasauskas D., Zhang D.S. 2004. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    Article  PubMed  CAS  Google Scholar 

  • Crowley J.J., Treistman S.N., Dopico A.M. 2003. Cholesterol antagonizes ethanol potentiation of human brain BKCa channels reconstituted into phospholipid bilayers. Mol. Pharmacol. 64:365–372

    Article  PubMed  CAS  Google Scholar 

  • de Planque M.R., Goormaghtigh E., Greathouse D.V., Koeppe R.E., Kruijtzer J.A., Liskamp R.M., de Kruijff B., Killian J.A. 2001. Sensitivity of single membrane-spanning a-helical peptides to hydrophobic mismatch with a lipid bilayer: Effects on backbone structure, orientation, and extent of membrane incorporation. Biochemistry 40:5000–5010

    Article  PubMed  CAS  Google Scholar 

  • Doyle D.A. 2004a. Structural changes during ion channel gating. Trends Neurosci. 27:298–302

    Article  CAS  Google Scholar 

  • Doyle D.A. 2004b. Structural themes in ion channels. Eur. Biophys. J. 33:175–179

    Article  CAS  Google Scholar 

  • Doyle D.A., Morais C.J., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Dufrene Y.F., Lee G.U. 2000. Advances in the characterization of supported lipid films with the atomic force microscope. Biochim. Biophys. Acta 1509:14–41

    Article  PubMed  CAS  Google Scholar 

  • Duong-Ly K.C., Nanda V., Degrado W.F., Howard K.P. 2005. The conformation of the pore region of the M2 proton channel depends on lipid bilayer environment. Protein Sci. 14:856–861

    Article  PubMed  CAS  Google Scholar 

  • Fenimore P.W., Frauenfelder H., McMahon B.H., Parak F.G. 2002. Slaving: Solvent fluctuations dominate protein dynamics and functions. Proc. Natl. Acad. Sci. USA 99:16047–16051

    Article  PubMed  CAS  Google Scholar 

  • Garavaglia M., Dopinto S., Ritter M., Furst J., Saino S., Guizzardi F., Jakab M., Bazzini C., Vezzoli V., Dossena S., Rodighiero S., Sironi C., Botta G., Meyer G., Henderson R., Paulmichl M. 2004. Membrane thickness changes ion-selectivity of channel-proteins. Cell. Physiol. Biochem. 14:231–240

    Article  PubMed  CAS  Google Scholar 

  • Gillespie P.G., Walker R.G. 2001. Molecular basis of mechanosensory transduction. Nature 413:194–202

    Article  PubMed  CAS  Google Scholar 

  • Gillis K.D., 2000. Admittance-based measurement of membrane capacitance using the EPC-9 patch-clamp amplifier. Pfluegers Arch. 439:655–664

    Article  CAS  Google Scholar 

  • Giocondi M.C., Boichot S., Plenat T., Le Grimellec C.C. 2004. Structural diversity of sphingomyelin microdomains. Ultramicroscopy 100:135–143

    Article  PubMed  CAS  Google Scholar 

  • Gribkoff V.K., Starrett J.E., Jr., Dworetzky S.I. 1997. The pharmacology and molecular biology of large-conductance calcium-activated (BK) potassium channels. Adv. Pharmacol. 37:319–348

    Article  PubMed  CAS  Google Scholar 

  • Horrigan F.T., Heinemann S.H., Hoshi T. 2005. Heme regulates allosteric activation of the Slo1 BK channel. J. Gen. Physiol. 126:7–21

    Article  PubMed  CAS  Google Scholar 

  • Howard J., Bechstedt S. 2004. Hypothesis: A helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr. Biol. 14:R224–R226

    Article  PubMed  CAS  Google Scholar 

  • Jakab M., Weiger T.M., Hermann A. 1997. Ethanol activates maxi Ca2+-activated K+ channels of clonal pituitary (GH3) cells. J. Membr. Biol. 157:237–245

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y., Lee A., Chen J., Cadene M., Chait B.T., MacKinnon R. 2002a. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522

    Article  CAS  Google Scholar 

  • Jiang Y., Lee A., Chen J., Cadene M., Chait B.T., MacKinnon R. 2002b. The open pore conformation of potassium channels. Nature 417:523–526

    Article  CAS  Google Scholar 

  • Jiang Y., Pico A., Cadene M., Chait B.T., MacKinnon R. 2001. Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29:593–601

    Article  PubMed  CAS  Google Scholar 

  • Krishnamoorthy G., Shi J., Sept D., Cui J. 2005. The NH2 terminus of RCK1 domain regulates Ca2+-dependent BKCa channel gating. J. Gen. Physiol. 126:227–241

    Article  PubMed  CAS  Google Scholar 

  • Lagos R., Wilkens M., Vergara C., Cecchi X., Monasterio O. 1993. Microcin E492 forms ion channels in phospholipid bilayer membrane. FEBS Lett. 321:145–148

    Article  PubMed  CAS  Google Scholar 

  • Lundbaek J.A., Andersen O.S. 1994. Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J. Gen. Physiol. 104:645–673

    Article  PubMed  CAS  Google Scholar 

  • Lundbaek J.A., Birn P., Hansen A.J., Sogaard R., Nielsen C., Girshman J., Bruno M.J., Tape S.E., Egebjerg J., Greathouse D.V., Mattice G.L., Koeppe R.E., Andersen O.S. 2004. Regulation of sodium channel function by bilayer elasticity: The importance of hydrophobic coupling. Effects of micelle-forming amphiphiles and cholesterol. J. Gen. Physiol. 123:599–621

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon R. 2003. Potassium channels. FEBS Lett. 555:62–65

    Article  PubMed  CAS  Google Scholar 

  • Marrink S.J., Mark A.E. 2004. Molecular view of hexagonal phase formation in phospholipid membranes. Biophys. J. 87:3894–3900

    Article  PubMed  CAS  Google Scholar 

  • Marsh, D. 1990. Calorimetric data. In: Handbook of Lipid Bilayers, pp. 135–159. CRC Press, Boca Raton, FL

  • Martens J.R., Navarro-Polanco R., Coppock E.A., Nishiyama A., Parshley L., Grobaski T.D., Tamkun M.M. 2000. Differential targeting of Shaker-like potassium channels to lipid rafts. J. Biol. Chem. 275:7443–7446

    Article  PubMed  CAS  Google Scholar 

  • Martens J.R., Sakamoto N., Sullivan S.A., Grobaski T.D., Tamkun M.M. 2001. Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J. Biol. Chem. 276:8409–8414

    Article  PubMed  CAS  Google Scholar 

  • Maulik P.R., Shipley G.G. 1995. X-ray diffraction and calorimetric study of N-lignoceryl sphingomyelin membranes. Biophys. J. 69:1909–1916

    PubMed  CAS  Google Scholar 

  • Maxfield F.R. 2002. Plasma membrane microdomains. Curr. Opin. Cell Biol. 14:483–487

    Article  PubMed  CAS  Google Scholar 

  • Morais-Cabral J.H., Zhou Y., MacKinnon R. 2001. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414:37–42

    Article  PubMed  CAS  Google Scholar 

  • Nezil F.A., Bloom M. 1992. Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes. Biophys. J. 61:1176–1183

    PubMed  CAS  Google Scholar 

  • Niu X., Qian X., Magleby K.L. 2004. Linker-gating ring complex as passive spring and Ca2+-dependent machine for a voltage- and Ca2+-activated potassium channel. Neuron 42:745–756

    Article  PubMed  CAS  Google Scholar 

  • Park J.B., Kim H.J., Ryu P.D., Moczydlowski E. 2003. Effect of phosphatidylserine on unitary conductance and Ba2+ block of the BK Ca2+-activated K+ channel: Re-examination of the surface charge hypothesis. J. Gen. Physiol. 121:375–398

    Article  PubMed  CAS  Google Scholar 

  • Pietrzykowski A.Z., Martin G.E., Puig S.I., Knott T.K., Lemos J.R., Treistman S.N. 2004. Alcohol tolerance in large-conductance, calcium-activated potassium channels of CNS terminals is intrinsic and includes two components: Decreased ethanol potentiation and decreased channel density. J. Neurosci. 24:8322–8332

    Article  PubMed  CAS  Google Scholar 

  • Ramu, Y., Xu, Y., Lu, Z. 2006. Enzymatic activation of voltage-gated potassium channels. Nature 442:696–699

    Article  PubMed  CAS  Google Scholar 

  • Réat V., Patzelt H., Ferrand M., Pfister C., Oesterhelt D., Zaccai G. 1998. Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering. Proc. Natl. Acad. Sci. USA 95:4970–4975

    Article  PubMed  Google Scholar 

  • Rinia H.A., Boots J.W., Rijkers D.T., Kik R.A., Snel M.M., Demel R.A., Killian J.A., van der Eerden J.P., de Kruijff B. 2002. Domain formation in phosphatidylcholine bilayers containing transmembrane peptides: Specific effects of flanking residues. Biochemistry 41:2814–2824

    Article  PubMed  CAS  Google Scholar 

  • Sun T., Naini A.A., Miller C. 1994. High-level expression and functional reconstitution of Shaker K+ channels. Biochemistry 33:9992–9999

    Article  PubMed  CAS  Google Scholar 

  • Tombola F., Pathak M.M., Isacoff E.Y. 2005. How far will you go to sense voltage? Neuron 48:719–725

    Article  PubMed  CAS  Google Scholar 

  • Turnheim K., Gruber J., Wachter C., Ruiz-Gutierrez V. 1999. Membrane phospholipid composition affects function of potassium channels from rabbit colon epithelium. Am. J. Physiol. 277:C83–C90

    PubMed  CAS  Google Scholar 

  • Valiyaveetil F.I., Zhou Y., MacKinnon R. 2002. Lipids in the structure, folding, and function of the KcsA K+ channel. Biochemistry 41:10771–10777

    Article  PubMed  CAS  Google Scholar 

  • van den Brink-van der Laan E., Dalbey R.E., Demel R.A., Killian J.A., de Kruijff B. 2001. Effect of nonbilayer lipids on membrane binding and insertion of the catalytic domain of leader peptidase. Biochemistry 40:9677–9684

    Google Scholar 

  • Venturoli M., Smit B., Sperotto M.M. 2005. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophys. J. 88:1778–1798

    Article  PubMed  CAS  Google Scholar 

  • Vergara C., Latorre R., Marrion N.V., Adelman J.P. 1998. Calcium-activated potassium channels. Curr. Opin. Neurobiol. 8:321–329

    Article  PubMed  CAS  Google Scholar 

  • Weiss T.M., Van Der Wel P.C., Killian J.A., Koeppe R.E., Huang H.W. 2003. Hydrophobic mismatch between helices and lipid bilayers. Biophys. J. 84:379–385

    PubMed  CAS  Google Scholar 

  • Williamson I.M., Alvis S.J., East J.M., Lee A.G. 2002. Interactions of phospholipids with the potassium channel KcsA. Biophys. J. 83:2026–2038

    PubMed  CAS  Google Scholar 

  • Wonderlin W.F., Finkel A., French R.J. 1990. Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps. Biophys. J. 58:289–297

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A., Singh S.K., Kawate T., Jin Y., Gouaux E. 2005. Crystal structure of a bacterial homologue of Na+/Cldependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

  • Yang L., Ding L., Huang H.W. 2003. New phases of phospholipids and implications to the membrane fusion problem. Biochemistry 42:6631–6635

    Article  PubMed  CAS  Google Scholar 

  • Yuan C., Furlong J., Burgos P., Johnston L.J. 2002. The size of lipid rafts: An atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys. J. 82:2526–2535

    PubMed  CAS  Google Scholar 

  • Yuan C., Johnston L.J. 2001. Atomic force microscopy studies of ganglioside GM1 domains in phosphatidylcholine and phosphatidylcholine/cholesterol bilayers. Biophys. J. 81:1059–1069

    PubMed  CAS  Google Scholar 

  • Yuan C., Johnston L.J. 2002. Phase evolution in cholesterol/DPPC monolayers: Atomic force microscopy and near field scanning optical microscopy studies. J. Microsc. 205:136–146

    Article  PubMed  CAS  Google Scholar 

  • Yuan C., O’Connell R.J., Feinberg-Zadek P.L., Johnston L.J., Treistman S.N. 2004. Bilayer thickness modulates the conductance of the BK channel in model membranes. Biophys. J. 86:3620–3633

    Article  PubMed  CAS  Google Scholar 

  • Zaccai G. 2000. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288:1604–1607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Paula Zadek and Andrew Wilson for assistance with growing the HEK-293 cells and John Crowley for helpful discussions and assistance with the preparation of BKCa channels containing membrane fragments from them. Funds were provided by National Institutes of Health grant AA12054 (to S. N. T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven N. Treistman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Connell, R.J., Yuan, C., Johnston, L.J. et al. Gating and Conductance Changes in BK Ca Channels in Bilayers Are Reciprocal. J Membrane Biol 213, 143–153 (2006). https://doi.org/10.1007/s00232-006-0034-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0034-1

Keywords

Navigation