Skip to main content
Log in

Epithelial Fluid Transport: Protruding Macromolecules and Space Charges Can Bring about Electro-Osmotic Coupling at the Tight Junctions

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The purpose of the present work is to investigate whether the idea of epithelial fluid transport based on electro-osmotic coupling at the level of the leaky tight junction (TJ) can be further supported by a plausible theoretical model. We develop a model for fluid transport across epithelial layers based on electro-osmotic coupling at leaky tight junctions (TJ) possessing protruding macromolecules and fixed electrical charges. The model embodies systems of electro-hydrodynamic equations for the intercellular pathway, namely the Brinkman and the Poisson-Boltzmann differential equations applied to the TJ. We obtain analytical solutions for a system of these two equations, and are able to derive expressions for the fluid velocity profile and the electrostatic potential. We illustrate the model by employing geometrical parameters and experimental data from the corneal endothelium, for which we have previously reported evidence for a central role for electro-osmosis in translayer fluid transport. Our results suggest that electro-osmotic coupling at the TJ can account for fluid transport by the corneal endothelium. We conclude that electro-osmotic coupling at the tight junctions could represent one of the basic mechanisms driving fluid transport across some leaky epithelia, a process that remains unexplained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Barfort P., Maurice D.M. 1974 Electrical potential and fluid transport across the corneal endothelluin. Exp. Eye Res. 19:11–19

    Article  CAS  PubMed  Google Scholar 

  • Bastug T., Kuyucak S. 2003. Role of the dielectric constants of membrane proteins and channel water in ion permeation. Biophys. J. 84:2871–2882

    CAS  PubMed  Google Scholar 

  • Brink H.C. 1947, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Scient. Res. A1:27–35

    CAS  Google Scholar 

  • Broday D.M. 2002. Motion of nanobeads proximate to plasma membranes during single partiote tracking. Bull. Math. Biol. 64:531–63

    Article  CAS  PubMed  Google Scholar 

  • Claude P. 1978. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membrane Biol 39:219–32

    Article  CAS  Google Scholar 

  • Claude P., Goodenough D.A. 1973. Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol 58:390–400

    Article  CAS  PubMed  Google Scholar 

  • Colegio O.R., Van Itallie C., Rahner C., Anderson J.M. 2003. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am. J. Physiol. 284:C1346–C1354

    CAS  Google Scholar 

  • Colegio O.R., Van Itallie C.M., McCrea H J., Rahner C., Anderson J.M. 2002. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am. J. Physiol. 283:C142–C147

    CAS  Google Scholar 

  • Donath E., Pastushenko .V 1979. Electrophoretical study of cell surface properties. Bioelectrochem. Bioenerg 6:543–554

    Article  CAS  Google Scholar 

  • Donath E., Pastushenko V., Chizmadjev Y. 1978. Electroosmottc flow in the hydrodynamic closed, chamber. Studies in Biophysics 68:145–154

    Google Scholar 

  • Donath E., Voigt A. 1986a. Electrophoretic mobility of human erythrocytes. On the applicability of the charged layer model. Biophys 49:493–499

    CAS  Google Scholar 

  • Donath E., Voigt A.. 1986b. Streaming current and streaming potential on structured surfaces. J. Colloid Interface Sci 109:123–139

    Article  Google Scholar 

  • Fischbarg J. 1972. Potentml diffetence and fluid transport acmss rabbit corneal endothelium. Biochim. Biophys. Acta 228:362–366

    Google Scholar 

  • Fischbarg, J., Rubashkin, A., Iserovich, P. 2004. Electro-osmotic coupling in leaky tight junctions is thoretically possible. In: Experimental Biology 2004, pp. A710 (Abstract #463.6) FASEB, Washington, D.C.

  • Fischbarg L, Warshavsky C.R., Lim J.J. 1977. Pathways for “hydmulically and osmotically-induced water flows across epithelia. Nature 266:71–74

    Article  CAS  PubMed  Google Scholar 

  • Gross R.J., Ostcrle J.F. 1968. Membrane transport characteristics of ultrafine capillaries. J. Chem. Phys. 49:228–234

    Article  CAS  PubMed  Google Scholar 

  • Guo P., Weinstein A.M., Weinbaum S. 2000, A hyctrodynamic mechanosetisory hypotheses for brush border microvilly. Am. J. Physiol. 279:F69B–F712

    CAS  Google Scholar 

  • Guo P., Weinstein. A.M., Weinbaum S. 2003. A dual-pathway ultrastructural model for the tight junction of rat proximal tubule epithelium. Am J. Physiol. 285:F241–F257

    CAS  Google Scholar 

  • Hanter R.J., 1981. Zeta Potential in Colloid Science; Principles arid Applications, Academic Press, New York

    Google Scholar 

  • Happel, J., Brenner, H. 1983. Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. M. Nijhoff; Distributed by Kluwer Boston, The Hague

  • Harned, H.S., Owen, B.B. 1958, The Physical Chemistry of Electrolytic Soltions. Reinhold, New York

  • Hill A.E., Shachar-Hill B., Shaohar-Hill Y. 2004. What are aquaporins for? J. Membrane Biol 197:1–32

    Article  CAS  Google Scholar 

  • Hodson S. 1974. The regulation of corneal hydration by a salt pump requiring the presence of sodium and bicarbonate ions. J. Physiol. 236:271–302

    CAS  PubMed  Google Scholar 

  • Jones I.S. 1979. A theory of electrophoresis of large colloid particles with adsorbed polyelectrolyte. J. Colloid Interface Sci 68:451–461

    Article  CAS  Google Scholar 

  • Kaye G.I., Sibley R.C. Hoefle F.B. 1973. Recent studies on the nature and function of the corneal endothelial barrier. Exp. Eye Res. 15:585–613

    Article  CAS  PubMed  Google Scholar 

  • Keh H.J., Liu Y.C. 1995. Elecctrokinetic flow in a circular capillary with a Hurfiice charge layer. J. Colloid Interface Sci. 172:222–229

    Article  CAS  Google Scholar 

  • Kruyt H.R. 1952. Colloid Science, Elsevier, New York

    Google Scholar 

  • Kuang K., Ma, L., Sanchez J.M., Fischbarg, J. 2004. Claudin expression and paracellular permeability in cultured rabbit corneal endothelial cells (rce). Invest. Ophthalmol. Vis. Sci. 45:E-Abstract 1090

    Google Scholar 

  • Lakshminarayanaiah N. 1984. t:quatiom of Membrane Biophysics. Academic Press. Orlando

    Google Scholar 

  • Larsen. E.H., Sorensen J.B., Sorensed J.N. 2002. Analysis of the sodium recirculation of theory of solute-coupled water transport in small intesltae. J. Physiol 542:33–50

    Article  CAS  PubMed  Google Scholar 

  • Levine S., Levine M., Sharp K.A., Brooks D.E. 1983. Theory of the electrokinetic behavior of human erythrocytes. Biophys 42:127–135

    CAS  PubMed  Google Scholar 

  • Loo D.D., Wright E.M., Zeuthen T. 2002. Water pumps. J. Physiol. 542:53–60

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin S., Muthias R.T. 1985 Electro-osmosis and the reabsorption of fluid in renal proximal tubules. J. Gen. Physiol. 85:699–728

    Article  CAS  PubMed  Google Scholar 

  • Naftalin RJ, Tripathi S. 1985. Passive water flows driven across the isolated, rabbit ileum by osmotic, hydrostatic and electrical gradients. 360:27–50

  • Pasquale L.R., Methlas R.T., Austin. L.R., Brink P.R., Ciunga M. 1990, Electrostrostatic properties of fiber cell membranes from the frog lens. Biophys. J. 58:939–945

    Article  CAS  PubMed  Google Scholar 

  • Reuss L. 2000. General of water transport. In: D.W. Seldin, G. Giebisch. (editors), The Kidney, Physiology and Pathophysiology (chapter 13). Raven Press, New York pp 321–340

    Google Scholar 

  • Reuss, L. 2006 (in press). Mechanisms of water transport across cell embranes and epithelia. In: R.J. Alpern, S.C. Hebert, editors. The Kidney, Physiology and Pathophysiology. Elsevier, Amsterdam

  • Riande, R. 1972, Transfer phenomena in ion-exchange membranes. In: J. Hladik, editor. Physics of Electrolytes. Academic Press, London, New York

  • Romm E.S., Rubashkin A.A. 1983. On the thermodynamic theory of the electrokinetic potential on the surface of oxides. Sov. Elec. 19:1348–1352 (English Transl.)

    Google Scholar 

  • Rubashkin A.A. 1989. Structure of the electric double layer at the interface between a microporous ion-exchange membrane and an electrolyte solution. Sov. Elec. 25:571–578 (English Transl.)

    Google Scholar 

  • Sanchez J.M., Li Y., Rubashkin A., Iserovich P., Wen Q., Ruberti J.W., Smith R.W., Rittenband D., Kuang K., Diecke F.P.J., Fischbarg J. 2002. Evidence for a Central Role for Electro-Osmosis in Fluid Transport by Coitieal Endofhelium. J. Membrane Biol. 187:37–50

    Article  CAS  Google Scholar 

  • Sasidhar V., Ruckenstein E. 1981. Electrolyte osmosis through capillaries. J. Colloid Interface Science 82:439–456

    CAS  Google Scholar 

  • Schmid G.. 1950. Zur Electrochemic feinporiger Kapillarsystems. Z. Electrochem. 54:424–430

    CAS  Google Scholar 

  • Schmid G., Schwarz H. 1952. Zur Elektrochemie feinporiger Kapitiarsysteme. V. Stronutngspotentiale: Donnan-Behinderung des Elektolytdurchgangs bei Strömungen. Z. Etektrochem. 56:35–44

    CAS  Google Scholar 

  • Shachar-Hill B., Hill A.E. 2002. Paracellular fluid tfansport by epithelia. Int. Rev. Cytol. 215:319–50

    Article  CAS  PubMed  Google Scholar 

  • Starov V.M., Bowen W.R., Welfoot J.S. 2001. Flow of multicomponent electrolyte solution through narrow pores of nanofiltration membranes. J. Colloid Interface Science 240:509–524

    Article  CAS  Google Scholar 

  • Sterov V.M., Solomentsev Y.E. 1993. Influence of gel layer on electrokinetic phenomena. 1. Streaming potential J. Colloid Interface Science 158:159–165

    Article  CAS  Google Scholar 

  • Tada S., Tarbell J.M. 2000. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells. Am. J. Physiol. 278:H1589–H1597

    CAS  Google Scholar 

  • Tikhomolova K.P., Kemp T.J. 1993. Electro-osmosis. E. Horwood, New York

    Google Scholar 

  • Van Itallic C.M., Anderson J.M. 2004. The molecular physiology of tight junction press. Physiology 19:331–338

    Article  CAS  PubMed  Google Scholar 

  • Vorotynsev M.A., Ermakov Y.A., Markin V.S., Rubashkin A.A. 1993, Distribution of the interfacial potential drop in a situation when ionic solution components enter a layer of finite thickness with fixed space charge. Russian J. Electrochem. 29:513–523

    Google Scholar 

  • Vorotyntsev M.A., Rubashkin A.A., Badiali J.P. 1996. Potential distribution across the electroactive-polymer film between the metal and solution as a function of the film charging level. Electrochimica Acta 41:2313–2330

    Article  CAS  Google Scholar 

  • Weinstein A.M. 2003. Mathematical models of renal fluid and electrolyte transport: acknowledging our uncertainty. Am. J. Physiol. 284:F871–F884

    CAS  Google Scholar 

  • Weinstein A.M., Windhager E.E. 2001. The paracellular shunt of proximal tubule. J. Membrane Biol. 184:241–245

    Article  CAS  Google Scholar 

  • Wundeirlich R.W. 1982. The effects of surface structure on the eleetrophorettc mobilities of large particles. J. Colloid. Interface Sci. 88:385–397

    Article  CAS  Google Scholar 

  • Zeuthen T. 2002. General models for water transport across leaky epithelia. Int. Rev. Cytol. 213:283–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fischbarg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubashkin, A., Iserovich, P., Hernández, J. et al. Epithelial Fluid Transport: Protruding Macromolecules and Space Charges Can Bring about Electro-Osmotic Coupling at the Tight Junctions. J Membrane Biol 208, 251–263 (2006). https://doi.org/10.1007/s00232-005-0831-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0831-y

Keywords

Navigation