Skip to main content
Log in

Performance drifts in two-finger cyclical force production tasks performed by one and two actors

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We explored changes in the cyclical two-finger force performance task caused by turning visual feedback off performed either by the index and middle fingers of the dominant hand or by two index fingers of two persons. Based on an earlier study, we expected drifts in finger force amplitude and midpoint without a drift in relative phase. The subjects performed two rhythmical tasks at 1 Hz while paced by an auditory metronome. One of the tasks required cyclical changes in total force magnitude without changes in the sharing of the force between the two fingers. The other task required cyclical changes in the force sharing without changing total force magnitude. Subjects were provided with visual feedback, which showed total force magnitude and force sharing via cursor motion along the vertical and horizontal axes, respectively. Further, visual feedback was turned off, first on the variable that was not required to change and then on both variables. Turning visual feedback off led to a mean force drift toward lower magnitudes while force amplitude increased. There was a consistent drift in the relative phase in the one-hand task with the index finger leading the middle finger. No consistent relative phase drift was seen in the two-person tasks. The shape of the force cycle changed without visual feedback reflected in the lower similarity to a perfect cosine shape and in the higher time spent at lower force magnitudes. The data confirm findings of earlier studies regarding force amplitude and midpoint changes, but falsify predictions of an earlier proposed model with respect to the relative phase changes. We discuss factors that could contribute to the observed relative phase drift in the one-hand tasks including the leader–follower pattern generalized for two-effector tasks performed by one person.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2016a) The nature of constant and cyclic force production: Unintentional force-drift characteristics. Exp Brain Res 234:197–208

    Article  PubMed  Google Scholar 

  • Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2016b) Unsteady steady-states: central causes of unintentional force drift. Exp Brain Res 234:3597–3611

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2018) Systematic, unintended drifts in the cyclic force produced with the fingertips. Mot Control 22:82–99

    Article  Google Scholar 

  • Bosga J, Meulenbroek RG, Cuijpers RH (2010) Intra- and interpersonal movement coordination in jointly moving a rocking board. Mot Control 14:440–459

    Article  Google Scholar 

  • Candidi M, Curioni A, Donnarumma F, Sacheli LM, Pezzulo G (2015) Interactional leader-follower sensorimotor communication strategies during repetitive joint actions. J R Soc Interface 12(110):0644

    Article  PubMed  Google Scholar 

  • Carson RG (1995) The dynamics of isometric bimanual coordination. Exp Brain Res 105:465–476

    CAS  PubMed  Google Scholar 

  • Davis TJ, Pinto GB, Kiefer AW (2017) The stance leads the dance: the emergence of role in a joint supra-postural task. Front Psychol 8:718

    Article  PubMed  PubMed Central  Google Scholar 

  • Debaere F, Van Assche D, Kiekens C, Verschueren SM, Swinnen SP (2001) Coordination of upper and lower limb segments: deficits on the ipsilesional side after unilateral stroke. Exp Brain Res 141:519–529

    Article  CAS  PubMed  Google Scholar 

  • Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2003) Internal vs. external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage 19:764–776

    Article  PubMed  Google Scholar 

  • Feldman AG (1980) Superposition of motor programs. I. Rhythmic forearm movements in man. Neurosci 5:81–90

    Article  CAS  Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391

    Article  CAS  PubMed  Google Scholar 

  • Feldman AG (2015) Referent control of action and perception: Challenging conventional theories in behavioral science. Springer, NY

    Book  Google Scholar 

  • Ganesh G, Takagi A, Osu R, Yoshioka T, Kawato M, Burdet E (2014) Two is better than one: physical interactions improve motor performance in humans. Sci Rep 4:3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorniak SL, Duarte M, Latash ML (2008) Do synergies improve accuracy? A study of speed-accuracy trade-offs during finger force production. Mot Control 12:151–172

    Article  Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356

    Article  CAS  PubMed  Google Scholar 

  • Jo HJ, Ambike S, Lewis MM, Huang X, Latash ML (2016) Finger force changes in the absence of visual feedback in patients with Parkinson’s disease. Clin Neurophysiol 127:684–692

    Article  PubMed  Google Scholar 

  • Kay BA, Kelso JAS, Saltzman EL, Schoner G (1987) Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. J Exp Psychol Hum Percept Perform 13:178–192

    Article  CAS  PubMed  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: The self-organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Kelso JAS, DelColle JD, Schöner G (1990) Action-perception as a pattern formation process. Attention performance XIII 5:139–169

    Google Scholar 

  • Kennedy D, Rhee J, Shea CH (2016) Symmetrical and asymmetrical influences on force production in 1:2 and 2:1 bimanual force coordination tasks. Exp Brain Res 234:287–300

    Article  PubMed  Google Scholar 

  • Kovacs AJ, Buchanan JJ, Shea CH (2009) Bimanual 1:1 with 90 degrees continuous relative phase: difficult or easy. Exp Brain Res 193:129–136

    Article  PubMed  Google Scholar 

  • Kovacs AJ, Buchanan JJ, Shea CH (2010) Impossible is nothing: 5:3 and 4:3 multi-frequency bimanual coordination. Exp Brain Res 201:249–259

    Article  PubMed  Google Scholar 

  • Lafe CW, Pacheco MM, Newell KM (2016a) Adapting relative phase of bimanual isometric force coordination through scaling visual information intermittency. Hum Mov Sci 47:186–196

    Article  PubMed  Google Scholar 

  • Lafe CW, Pacheco MM, Newell KM (2016b) Bimanual coordination and the intermittency of visual information in isometric force tracking. Exp Brain Res 234:2025–2034

    Article  PubMed  Google Scholar 

  • Lamb PF, Stöckl M (2014) On the use of continuous relative phase: Review of current approaches and outline for a new standard. Clin Biomech 29:484–493

    Article  Google Scholar 

  • Latash ML (2010) Motor synergies and the equilibrium-point hypothesis. Mot Control 14:294–322

    Article  Google Scholar 

  • Latash ML (2016) Towards physics of neural processes and behavior. Neurosci Biobehav Rev 69:136–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Latash ML (2017) Biological movement and laws of physics. Mot Control 21:327–344

    Article  Google Scholar 

  • Latash ML, Zatsiorsky VM (1993) Joint stiffness: Myth or reality? Hum Move Sci 12: 653-692

    Article  Google Scholar 

  • Latash ML, Zatsiorsky VM (2016) Biomechanics and motor control: defining central concepts. Academic Press, New York

    Google Scholar 

  • Levy-Tzedek S, Ben Tov M, Karniel A (2011) Rhythmic movements are larger and faster but with the same frequency on removal of visual feedback. J Neurophysiol 106:2120–2126

    Article  CAS  PubMed  Google Scholar 

  • Li ZM, Latash ML, Zatsiorsky VM (1998) Force sharing among fingers as a model of the redundancy problem. Exp Brain Res 119:276–286

    Article  CAS  PubMed  Google Scholar 

  • Li ZM, Zatsiorsky VM, Latash ML (1999) Contributions of the extrinsic and intrinsic hand muscles to the moments in finger joints. J Clin Biomechs 15:203–211

    Article  Google Scholar 

  • Li S, Danion F, Latash ML, Li Z-M, Zatsiorsky VM (2000) Characteristics of finger force production during one- and two-hand tasks. Hum Move Sci 19:897–924

    Article  Google Scholar 

  • Li ZM, Zatsiorsky VM, Latash ML (2001) The effect of finger extensor mechanism on the flexor force during isometric tasks. J Biomechs 34:1097–1102

    Article  CAS  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    Article  CAS  PubMed  Google Scholar 

  • Mojtahedi K, Whitsell B, Artemiadis P, Santello M (2017) Communication and inference of intended movement direction during human-human physical interaction. Front Neurorobot 11:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Mushiake H, Inase M, Tanji J (1991) Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. J Neurophysiol 66:705–718

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MA, Hsu J, Park J, Clark JE, Shim JK (2008) Age-related changes in multi-finger interactions in adults during maximum voluntary finger force production tasks. Hum Mov Sci 27:714–727

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsa B, O’Shea DJ, Zatsiorsky VM, Latash ML (2016) On the nature of unintentional action: A study of force/moment drifts during multi-finger tasks. J Neurophysiol 116:698–708

    Article  PubMed  Google Scholar 

  • Parsa B, Terekhov A, Zatsiorsky VM, Latash ML (2017) Optimality and stability of intentional and unintentional actions: I. Origins of drifts in performance. Exp Brain Res 235:481–496

    Article  PubMed  Google Scholar 

  • Poon C, Chin-Cottongim LG, Coombes SA, Corcos DM, Vaillancourt DE (2012) Spatiotemporal dynamics of brain activity during the transition from visually guided to memory-guided force control. J Neurophysiol 108:1335–1348

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed KB, Peshkin MA (2008) Physical collaboration of human-human and human-robot teams. IEEE Trans Haptics 1:108–120

    Article  CAS  PubMed  Google Scholar 

  • Reschechtko S, Latash ML (2017) Stability of hand force production: I. Hand level control variables and multi-finger synergies. J Neurophysiol 118:3152–3164

    Article  PubMed  Google Scholar 

  • Reschechtko S, Zatsiorsky VM, Latash ML (2014) Stability of multifinger action in different state spaces. J Neurophysiol 112:3209–3218

    Article  PubMed  PubMed Central  Google Scholar 

  • Reschechtko S, Hasanbarani F, Akulin VM, Latash ML (2017) Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model. Neurosci 350:94–109

    Article  CAS  Google Scholar 

  • Reschechtko S, Cuadra C, Latash ML (2018) Force illusions and drifts observed during muscle vibration. J Neurophysiol. https://doi.org/10.1152/jn.00563.2017. (in press)

    PubMed  Google Scholar 

  • Sainburg RL (2005) Handedness: differential specializations for control of trajectory and position. Exerc Sport Sci Rev 33:206–213

    Article  PubMed  Google Scholar 

  • Schieber MH (1999) Voluntary descending control. In: Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) Fundamental neuroscience. Academic Press, San Diego etc, pp 931–949

    Google Scholar 

  • Schoner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520

    Article  CAS  PubMed  Google Scholar 

  • Shim JK, Oliveira MA, Hsu J, Huang J, Park J, Clark JE (2007) Hand digit control in children: age-related changes in hand digit force interactions during maximum flexion and extension force production tasks. Exp Brain Res 176:374–386

    Article  PubMed  Google Scholar 

  • Slifkin AB, Vaillancourt DE, Newell KM (2000) Intermittency in the control of continuous force production. J Neurophysiol 84:1708–1718

    Article  CAS  PubMed  Google Scholar 

  • Solnik S, Reschechtko S, Wu Y-H, Zatsiorsky VM, Latash ML (2016) Interpersonal synergies: Static prehension tasks performed by two actors. Exp Brain Res 234:2267–2282

    Article  PubMed  PubMed Central  Google Scholar 

  • Solnik S, Qiao M, Latash ML (2017) Effects of visual feedback and memory on unintentional drifts in performance during finger pressing tasks. Exp Brain Res 235:1149–1162

    Article  PubMed  Google Scholar 

  • Sternad D, Collins D, Turvey MT(1995) The detuning factor in the dynamics of interlimb rhythmic coordination.Biol Cybern73:27–35

    Article  CAS  PubMed  Google Scholar 

  • Sternad D, Turvey MT, Saltzman EL (1999) Dynamics of 1:2 coordination: Sources of symmetry breaking. J Mot Behav 31:224–235

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Russell DM (2002) Temporal capacity of short-term visuomotor memory in continuous force production. Exp Brain Res 145:275–285

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Slifkin AB, Newell KM (2001) Visual control of isometric force in Parkinson’s disease. Neurophysiologia 39:1410–1418

    CAS  Google Scholar 

  • Vaillancourt DE, Thulborn KR, Corcos DM (2003) Neural basis for the processes that underlie visually guided and internally guided force control in humans. J Neurophysiol 90:3330–3340

    Article  PubMed  Google Scholar 

  • Wilson AD, Bingham GP (2008) Identifying the information for the visual perception of relative phase. Percept Psychophys 70:465–476

    Article  PubMed  Google Scholar 

  • Wilson AD, Bingham GP, Craig JC (2003) Proprioceptive perception of phase variability. J Exp Psychol Hum Percept Perform 29:1179–1190

    Article  PubMed  Google Scholar 

  • Wilson AD, Snapp-Childs W, Coats R, Bingham GP (2010) Learning a coordinated rhythmic movement with task-appropriate coordination feedback. Exp Brain Res 205:513–520

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Li ZM, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131:187–195

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zatsiorsky VM, Latash ML (2006) Accurate production of time-varying patterns of the moment of force in multi-finger tasks. Exp Brain Res 175:68–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Solnik S, Wu Y-H, Latash ML (2014) Equifinality and its violations in a redundant system: Control with referent configurations in a multi-joint positional task. Mot Control 18:405–424

    Article  Google Scholar 

Download references

Acknowledgements

We are very much grateful to Dr. Mehdi Shahbazi for facilitating the visit of Ms. Fariba Hasanbarani to The Pennsylvania State University. The study was in part supported by NIH Grant NS095873.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Latash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanbarani, F., Reschechtko, S. & Latash, M.L. Performance drifts in two-finger cyclical force production tasks performed by one and two actors. Exp Brain Res 236, 779–794 (2018). https://doi.org/10.1007/s00221-018-5179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-018-5179-5

Keywords

Navigation