Skip to main content
Log in

Sulfonate-terminated carbosilane dendron-coated nanotubes: a greener point of view in protein sample preparation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Reduction or removal of solvents and reagents in protein sample preparation is a requirement. Dendrimers can strongly interact with proteins and have great potential as a greener alternative to conventional methods used in protein sample preparation. This work proposes the use of single-walled carbon nanotubes (SWCNTs) functionalized with carbosilane dendrons with sulfonate groups for protein sample preparation and shows the successful application of the proposed methodology to extract proteins from a complex matrix. SEM images of nanotubes and mixtures of nanotubes and proteins were taken. Moreover, intrinsic fluorescence intensity of proteins was monitored to observe the most significant interactions at increasing dendron generations under neutral and basic pHs. Different conditions for the disruption of interactions between proteins and nanotubes after protein extraction and different concentrations of the disrupting reagent and the nanotube were also tried. Compatibility of extraction and disrupting conditions with the enzymatic digestion of proteins for obtaining bioactive peptides was also studied. Finally, sulfonate-terminated carbosilane dendron-coated SWCNTs enabled the extraction of proteins from a complex sample without using non-environmentally friendly solvents that were required so far.

Green protein extraction from a complex sample employing carbosilane dendron coated nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armenta S, Garrigues S, de la Guardia M. Green analytical chemistry. Trac-Trends Anal Chem. 2008;27:497–511.

    Article  CAS  Google Scholar 

  2. Wang W, Tai F, Chen S. Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J Sep Sci. 2008;31:2032–9.

    Article  CAS  Google Scholar 

  3. Ward WW, Swiatek G. Protein purification. Curr Anal Chem. 2009;5:85–105.

    Article  CAS  Google Scholar 

  4. Kalhapure RS, Kathiravan MK, Akamanchi KG, Govender T. Dendrimers—from organic synthesis to pharmaceutical applications: an update. Pharm Dev Technol. 2015;20:22–40.

    Article  CAS  Google Scholar 

  5. Martinho N, Florindo H, Silva L, Brocchini S, Zloh M, Barata T. Molecular modeling to study dendrimers for biomedical applications. Molecules. 2014;19:20424–67.

    Article  Google Scholar 

  6. Bravo-Osuna I, Vicario-de-la-Torre M, Andrés-Guerrero V, Sánchez-Nieves J, Guzmán-Navarro M, de la Mata FJ, Gómez R, de las Heras B, Argueso P, Ponchel G, Herrero-Vanrell R, Molina-Martínez IT. Novel water-soluble muco adhesive carbosilane dendrimers for ocular administration. Mol Pharm. 2016;13:2966–76.

    Article  CAS  Google Scholar 

  7. Hatano K, Matsuoka K, Terunuma D. Carbosilane glycodendrimers. Chem Soc Rev. 2013;42:4574–98.

    Article  CAS  Google Scholar 

  8. González-García E, Maly M, de la Mata FJ, Gómez R, Marina ML, García MC. Factors affecting interactions between sulphonate-terminated dendrimers and proteins: a three case study. Colloid Surf B-Biointerfaces. 2017;149:196–205.

    Article  Google Scholar 

  9. González-García E, Maly M, de la Mata FJ, Gómez R, Marina ML, García MC. Proof of concept of a “greener” protein purification/enrichment method based on carboxylate-terminated carbosilane dendrimer–protein interactions. Anal Bioanal Chem. 2016;408:7679–87.

    Article  Google Scholar 

  10. Vichchulada P, Lipscomb LD, Zhang Q, Lay MDJ. Incorporation of single-walled carbon nanotubes into functional sensor applications. Nanosci Nanotechnol. 2009;9:2189–200.

    Article  CAS  Google Scholar 

  11. Abdalla S, Al-Marzouki F, Al-Ghamdi AA, Abdel-Daiem A. Different technical applications of carbon nanotubes. Nanoscale Res Lett. 2015;10:358.

    Article  CAS  Google Scholar 

  12. Liang F, Chen B. A review on biomedical applications of single-walled carbon nanotubes. Curr Med Chem. 2010;17:10–24.

    Article  CAS  Google Scholar 

  13. Li L, Lin R, He H, Sun M, Jiang L, Gao M. Interaction of amidated single-walled carbon nanotubes with protein by multiple spectroscopic methods. J Lumin. 2014;145:125–31.

    Article  CAS  Google Scholar 

  14. Morikawa M, Kuboki Y, Akasaka T, Abe S, Takita H, Watari F. Adsorption behavior of albumin and other proteins on carbon nanotubes studied by chromatography. Bioceramics 24. 2013;529-530:615–20.

    CAS  Google Scholar 

  15. Horn DW, Tracy K, Easley CJ, Davis VA. Lysozyme dispersed single-walled carbon nanotubes: interaction and activity. J Phys Chem C. 2012;116:10341–8.

    Article  CAS  Google Scholar 

  16. Du J, Ge C, Lu Y, Bai R, Li D, Yang Y, Liao L, Chen CJ. The interaction of serum proteins with carbon nanotubes depend on the physicochemical properties of nanotubes. Nanosci Nanotechnol. 2011;11:10102–10.

    Article  CAS  Google Scholar 

  17. Kane RS, Stroock AD. Nanobiotechnology: protein–nanomaterial interactions. Biotechnol Prog. 2007;23:316–9.

    Article  CAS  Google Scholar 

  18. Mehra NK, Palakurthi S. Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discov Today. 2016;21:585–97.

    Article  CAS  Google Scholar 

  19. Fan Y, Wu G, Su F, Li K, Xu L, Han X, Yan Y. Lipase oriented-immobilized on dendrimer-coated magnetic multi-walled carbon nanotubes toward catalyzing biodiesel production from waste vegetable oil. Fuel. 2016;178:172–8.

  20. Deb AK, Das SC, Saha A, Wayu MB, Marksberry MH, Baltz RJ, Chusuei CC. Ascorbic acid, acetaminophen, and hydrogen peroxide detection using a dendrimer-encapsulated Pt nanoparticle carbon nanotube composite. J Appl Electrochem. 2016;46:289–98.

    Article  CAS  Google Scholar 

  21. Alam AKMM, Beg MDH, Yunus RM, Mina MF, Maria KH, Mieno T. Evolution of functionalized multi-walled carbon nanotubes by dendritic polymer coating and their anti-scavenging behavior during curing process. Mater Lett. 2016;167:58–60.

    Article  Google Scholar 

  22. Caminade A, Majoral J. Dendrimers and nanotubes: a fruitful association. Chem Soc Rev. 2010;39:2034–47.

    Article  CAS  Google Scholar 

  23. Sridevi S, Vasu KS, Jayaraman N, Asokan S, Sood AK. Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer. Sens Actuator B-Chem. 2014;195:150–5.

    Article  CAS  Google Scholar 

  24. Xu L, Zhu Y, Yang X, Li C. Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection. Mater Sci Eng C-Mater Biol Appl. 2009;29:1306–10.

    Article  CAS  Google Scholar 

  25. Miodek A, Mejri N, Gomgnimbou M, Sola C, Korri-Youssoufi H. E-DNA sensor of mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Anal Chem. 2015;87:9257–64.

    Article  CAS  Google Scholar 

  26. Li F, Peng J, Zheng Q, Guo X, Tang H, Yao S. Carbon nanotube-polyamidoamine dendrimer hybrid-modified electrodes for highly sensitive electrochemical detection of microRNA24. Anal Chem. 2015;87:4806–13.

    Article  CAS  Google Scholar 

  27. Zhang J, Zhu Y, Chen C, Yang X, Li C. Carbon nanotubes coated with platinum nanoparticles as anode of biofuel cell. Particuology. 2012;10:450–5.

    Article  CAS  Google Scholar 

  28. Pan B, Cui D, Xu P, Ozkan C, Feng G, Ozkan M, Huang T, Chu B, Li Q, He R, Hu G. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology. 2009;20:125101.

    Article  Google Scholar 

  29. González-García E, Marina ML, García MC. Plum (Prunus domestica L.) by-product as a new and cheap source of bioactive peptides: extraction method and peptides characterization. J Funct Food. 2014;11:428–37.

    Article  Google Scholar 

  30. González-García E, Puchalska P, Marina ML, García MC. Fractionation and identification of antioxidant and angiotensin-converting enzyme-inhibitory peptides obtained from plum (Prunus domestica L.) stones. J Funct Food. 2015;19:376–84.

    Article  Google Scholar 

  31. González-García E, Marina ML, García MC, Righetti PG, Fasoli E. Identification of plum and peach seed proteins by nLC-MS/MS via combinatorial peptide ligand libraries. J Proteome. 2016;148:105–12.

    Article  Google Scholar 

  32. Lakshminarayanan PV, Toghiani H, Pittman CU. Nitric acid oxidation of vapor grown carbon nanofibers. Carbon. 2004;42:2433–42.

    Article  CAS  Google Scholar 

  33. Bradford MM. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein–dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  Google Scholar 

  34. Li P-S, Lee I-L, Yu W-L, Sun J-S, Jane W-N, Shen H-H. A novel albumin-based tissue scaffold for autogenic tissue engineering applications. Sci Rep. 2014;4:5600.

    Article  CAS  Google Scholar 

  35. Eftink MR. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J. 1994;66:482–501.

    Article  CAS  Google Scholar 

  36. Eftink MR. Fluorescence quenching reactions. Probing biological macromolecular structures. In: Dewey TG, editor. Biophysical and biochemical aspects of fluorescence spectroscopy. US: Springer; 1991. p. 1–41.

    Google Scholar 

  37. Rohiwal SS, Satvekar RK, Tiwari AP, Raut AV, Kumbhar SG, Pawar SH. Investigating the influence of effective parameters on molecular characteristics of bovine serum albumin nanoparticles. Appl Surf Sci. 2015;334:157–64.

    Article  CAS  Google Scholar 

  38. Hashimoto S, Fukasaka J, Takeuchi HJ. Structural study on acid-induced unfolding intermediates of myoglobin by using UV resonance Raman scattering from tryptophan residues. Raman Spectrosc. 2001;32:557–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness (ref. AGL2012-36362, AGL2016-79010-R, and CTQ-2014-54004-P). E.G.G., M.C.G., and M.L.M. also thank the Comunidad Autónoma of Madrid (Spain) and European funding from FEDER program (project S2013/ABI-3028, AVANSECAL-CM). E.G.-G. thanks the University of Alcalá for her pre-doctoral contract and C.G.U. thanks the Spanish Ministry of Economy and Competitiveness (FPI 2012) for his pre-doctoral contract. The authors thank Jorge Pérez Serrano, chief of the CAI Medicina y Biología de la Universidad de Alcalá, for his kind assistance with scanning electron microscopy and Novozymes Spain for the generous donation of Alcalase enzyme. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Concepción García.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-García, E., Gutiérrez Ulloa, C.E., de la Mata, F.J. et al. Sulfonate-terminated carbosilane dendron-coated nanotubes: a greener point of view in protein sample preparation. Anal Bioanal Chem 409, 5337–5348 (2017). https://doi.org/10.1007/s00216-017-0479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0479-3

Keywords

Navigation