Skip to main content
Log in

Partitions into kth powers of terms in an arithmetic progression

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

G. H. Hardy and S. Ramanujan established an asymptotic formula for the number of unrestricted partitions of a positive integer, and claimed a similar asymptotic formula for the number of partitions into perfect kth powers, which was later proved by E. M. Wright. Recently, R. C. Vaughan provided a simpler asymptotic formula in the case \(k=2\). In this paper, we consider partitions into parts from a specific set \(A_k(a_0,b_0) :=\left\{ m^k : m \in \mathbb {N} , m \equiv a_0 \,(\text {mod}\,b_0) \right\} \), for fixed positive integers k, \(a_0,\) and \(b_0\). We give an asymptotic formula for the number of such partitions, thus generalizing the results of Wright and Vaughan. Moreover, we prove that the number of such partitions is even (odd) infinitely often, which generalizes O. Kolberg’s theorem for the ordinary partition function p(n).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlgren, S.: Distribution of parity of the partition function in arithmetic progressions. Indag. Math. (N.S.) 10, 173–181 (1999)

    Article  MathSciNet  Google Scholar 

  2. Apostol, T.M.: Introduction to Analytic Number Theory, vol. 1. Springer, Berlin (1976)

    Book  Google Scholar 

  3. Berndt, B.C., Yee, A.J., Zaharescu, A.: New theorems on the parity of partition functions. J. Reine Angew. Math. 566, 91–109 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Davenport, H.: Multiplicative Number Theory, 3rd edn. Springer, New York (2000)

    MATH  Google Scholar 

  5. Fabrykowski, J., Subbarao, M.V.: Some new identities involving the partition function \(p(n)\). In: Mollin, R.A. (ed.) Number Theory, pp. 125–138. Walter de Gruyter, New York (1990)

    Google Scholar 

  6. Gafni, A.: Power partitions. J. Number Theory 163, 19–42 (2016)

    Article  MathSciNet  Google Scholar 

  7. Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. 17, 75–115 (1918)

    Article  Google Scholar 

  8. Kolberg, O.: Note on the parity of the partition function. Math. Scand. 7, 377–378 (1959)

    Article  MathSciNet  Google Scholar 

  9. Newman, M.: Periodicity modulo m and divisibility properties of the partition function. Trans. Am. Math. Soc. 97, 225–236 (1960)

    MathSciNet  MATH  Google Scholar 

  10. Nicolas, J.-L.: Odd values of the partition function \(p(n)\). Int. J. Number Theory 2(4), 469–487 (2006)

    Article  MathSciNet  Google Scholar 

  11. Nicolas, J.-L., Ruzsa, I .Z., Sárközy, A.: On the parity of additive representation functions. With an appendix by J. P. Serre. J. Number Theory. 73, 292–317 (1998)

    Article  MathSciNet  Google Scholar 

  12. Nicolas, J.-L., Sárközy, A.: On the asymptotic behaviour of general partitions functions. Ramanujan J. 4(1), 29–39 (2000)

    Article  MathSciNet  Google Scholar 

  13. Nicolas, J.-L., Sárközy, A.: On the asymptotic behaviour of general partitions functions II. Ramanujan J. 7(1–3), 279–298 (2003)

    Article  MathSciNet  Google Scholar 

  14. Nörlund, N.E.: Vorlesungen über Differenzenrechnung. Chelsea, New York (1954)

    MATH  Google Scholar 

  15. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Special Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  16. Ono, K.: Parity of the partition function in arithmetic progressions. J. Reine Angew. Math. 472, 1–15 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Ono, K.: The partition function in arithmetic progressions. Math. Ann. 312, 251–260 (1998)

    Article  MathSciNet  Google Scholar 

  18. Richmond, L.B.: A general asymptotic result for partitions. Can. J. Math. 27(5), 1083–1091 (1975)

    Article  MathSciNet  Google Scholar 

  19. Titchmarsh, E.C.: The Theory of the Riemann Zeta-function, 2nd edn. The Clarendon Press, Oxford University Press, New York (1986)

    MATH  Google Scholar 

  20. Vaughan, R.C.: The Hardy–Littlewood Method, 2nd edn. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  21. Vaughan, R.C.: Squares: additive questions and partitions. Int. J. Number Theory 11(5), 1367–1409 (2015)

    Article  MathSciNet  Google Scholar 

  22. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, reprint of the fourth (1927) edition. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  23. Wright, E.M.: Asymptotic partition formulae, III, partitions into \(k\)th powers. Acta Math. 63, 143–191 (1934)

    Article  MathSciNet  Google Scholar 

  24. Yang, Y.: Partitions into primes. Trans. Am. Math. Soc. 352(6), 2581–2600 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce C. Berndt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berndt, B.C., Malik, A. & Zaharescu, A. Partitions into kth powers of terms in an arithmetic progression. Math. Z. 290, 1277–1307 (2018). https://doi.org/10.1007/s00209-018-2063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2063-8

Keywords

Mathematics Subject Classification

Navigation