Skip to main content
Log in

A comparative analysis of tellurite detoxification by members of the genus Shewanella

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The increasing industrial utilization of tellurium has resulted in an important environmental pollution with the soluble, extremely toxic oxyanion tellurite. In this context, the use of microorganisms for detoxifying tellurite or tellurium biorecovery has gained great interest. The ability of different Shewanella strains to reduce tellurite to elemental tellurium was assessed; the results showed that the reduction process is dependent on electron transport and the ∆pH gradient. While S. baltica OS155 showed the highest tellurite resistance, S. putrefaciens was the most efficient in reducing tellurite. Moreover, pH-dependent tellurite transformation was associated with tellurium precipitation as tellurium dioxide. In summary, this work highlights the high tellurite reduction/detoxification ability exhibited by a number of Shewanella species, which could represent the starting point to develop friendly methods for the recovery of elemental tellurium (or tellurium dioxide).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amoozegar M, Ashengroph M, Malekzadeh F, Razavi M, Naddaf S, Kabiri M (2008) Isolation and initial characterization of the tellurite reducing moderately halophilic bacterium, Salinicoccus sp. strain QW6. Microbiol Res 163:456–465

    Article  CAS  PubMed  Google Scholar 

  • Arenas F, Pugin B, Henríquez N, Arenas M, Díaz W, Pozo M et al (2014) Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antarctica. Polar Sci 8:40–52

    Article  Google Scholar 

  • Arenas-Salinas M, Vargas-Pérez JI, Morales W, Pinto C, Muñoz-Díaz P, Cornejo FA et al (2016) Flavoprotein-mediated tellurite reduction: structural basis and applications to the synthesis of tellurium-containing nanostructures. Front Microbiol 7:1160

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Butler I, El-Sherbenyb H, Kenawyb I, Mostafa S (2013) Synthesis and spectroscopic characterization of complexes of Cr(III), Cr(VI), Cu(III), Zn(II), Mo(VI), Pd(II), Ag(III), Au(III) and W(VI) with telluric acid. J Mol Struc 1036:510–520

    Article  CAS  Google Scholar 

  • Carotenuto G, Palomba M, De Nicola S, Ambrosone G, Coscia U (2015) Structural and photoconductivity properties of tellurium/PMMA films. Nanoscale Res Lett 10:1007

    Article  PubMed  Google Scholar 

  • Chasteen T, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–26

    Article  CAS  PubMed  Google Scholar 

  • Chasteen T, Fuentes D, Tantaleán J, Vásquez C (2009) Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev 33:820–832

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll M, Gardner T et al (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6:592–603

    Article  CAS  PubMed  Google Scholar 

  • Gharieb M, Kierans M, Gadd G (1999) Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction, and volatilization. Mycol Res 103:299–305

    Article  CAS  Google Scholar 

  • Imlay J (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iordanova R, Bachvarova-Nedelcheva A, Gegova R, Dimitriev Y (2013) Synthesis and characterization of TeO2/TiO2 powders obtained through Te (VI) acid. Bulg Chem Commun 45:485–490

    CAS  Google Scholar 

  • Kim D, Kanaly R, Hur H (2012) Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1. Bioresour Technol 125:127–131

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Kim M, Jiang S, Lee J, Hur H (2013) Promoted reduction of tellurite and formation of extracellular tellurium nanorods by concerted reaction between iron and Shewanella oneidensis MR-1. Environ Sci Technol 47:8709–8715

    CAS  PubMed  Google Scholar 

  • Kim D, Park S, Kim M, Hur H (2014) Accumulation of amorphous Cr(III)–Te(IV) nanoparticles on the Surface of Shewanella oneidensis MR-1 through reduction of Cr(VI). Environ Sci Technol 48:14599–14606

    Article  CAS  PubMed  Google Scholar 

  • Klonowska A, Heulin T, Vermeglio A (2005) Selenite and tellurite reduction by Shewanella oneidensis. Appl Environ Microbiol 71:5607–5609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsili E, Baron D, Shikhare I, Coursolle D, Gralnick J, Bond D (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina R, Burra R, Pérez J, Elías A, Muñoz C, Montes R et al (2010) Simple, fast, and sensitive method for quantification of tellurite in culture media. Appl Environ Microbiol 76:4901–4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales EH, Pinto CA, Luraschi R, Muñoz-Villagrán CM, Cornejo FA, Simpkins SW et al (2017) Accumulation of heme biosynthetic intermediates contributes to the antibacterial action of the metalloid tellurite. Nat Commun 8:15320

    Article  PubMed  PubMed Central  Google Scholar 

  • Ollivier P, Bahrou A, Marcus S, Cox T, Church T, Hanson T (2008) Volatilization and precipitation of tellurium by aerobic, tellurite-resistant marine microbes. Appl Environ Microbiol 74:7163–7173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez J, Calderón I, Arenas F, Fuentes D, Pradenas A, Fuentes E et al (2007) Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS One 2:e211

    Article  PubMed  PubMed Central  Google Scholar 

  • Plaza D, Gallardo C, Straub Y, Bravo D, Pérez J (2016) Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories. Microb Cell Fact 15:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions, 2nd English edn. National Association of Corrosion Engineers, Houston

    Google Scholar 

  • Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner R (2016) Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Microb Cell Fact 15:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular Cloning: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sen S, Sharma M, Kumar V, Muthe K, Satyam P, Bhatta U et al (2009) Chlorine gas sensors using one-dimensional tellurium nanostructures. Talanta 77:1567–1572

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Zhang Z, Wang Y, Glotzer S, Kotov N (2006) Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314:274–278

    Article  CAS  PubMed  Google Scholar 

  • Tantaleán J, Araya M, Saavedra C, Fuentes D, Pérez J, Calderón I et al (2003) The Geobacillus stearothermophilus V iscS gene, encoding cysteine desulfurase, confers resistance to potassium tellurite in Escherichia coli K-12. J Bacteriol 185:5831–5837

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor DE (1999) Bacterial tellurite resistance. Trends Microbiol 7:111–115

    Article  CAS  PubMed  Google Scholar 

  • Turner R, Borghese R, Zannoni D (2012) Microbial processing of tellurium as a tool in biotechnology. Biotechnol Adv 30:954–963

    Article  CAS  PubMed  Google Scholar 

  • Valdivia-González M, Loyola D, Jara M, Díaz-Vásquez W, Vásquez CC (2017) Comparative genomics and characterization of a Shewanella baltica isolated from the Antarctic territory. Res Microbiol (Under review)

  • Wang X, Liu G, Zhou J, Wang J, Jin R, Lv H (2011) Quinone-mediated reduction of selenite and tellurite by Escherichia coli. Bioresour Technol 102:3268–3271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of Mr. Javier Salazar with SEM is acknowledged. This work was supported by (1) FONDECYT (Fondo Nacional de Investigación Científica y Tecnológica) Grants # 1130362 and 1160051 (CCV), (2) Supporting fellowship Tesis Conicyt (Comisión Nacional de Investigación Científica y Tecnológica) Grant # 21120290 (MVG), and Supporting fellowship Tesis de Postgrado en temas Antárticos INACH (Instituto Antártico Chileno) Grant # DT_08–14 (MVG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Vásquez.

Additional information

Communicated by Jorge Membrillo-Hernández.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdivia-González, M.A., Díaz-Vásquez, W.A., Ruiz-León, D. et al. A comparative analysis of tellurite detoxification by members of the genus Shewanella . Arch Microbiol 200, 267–273 (2018). https://doi.org/10.1007/s00203-017-1438-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1438-2

Keywords

Navigation