Skip to main content

Advertisement

Log in

Copper–nickel-based diamond cutting tools: stone cutting evaluation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The current trend to replace cobalt in diamond cutting tools (DCTs) for stone cutting has motivated the study of alternative materials for this end. The present study evaluated the performance of several diamond-reinforced copper–nickel composites as regard to their suitability for serving as stone cutting materials. Cobalt (Co) and copper–nickel composites (Cu–Ni; Cu–Ni–10Sn, Cu–Ni–15Sn, Cu–Ni–Sn–2WC, and Cu–Ni–Sn–10WC) reinforced with 4 wt% of diamond particles were produced by hot pressing, at a temperature of 850 °C during 15 min and under an applied pressure of 50 MPa. The obtained specimens were characterized in terms of Vickers hardness and shear strength. The microstructure was analyzed by the means of SEM/EDS. A pin-on-disc wear test, with the composite serving as pin and a stone serving as disc, was performed in order to assess the tribological properties and cutting performance. Cu–Ni–Sn–10WC showed to be the material with the best cutting properties, with the highest disc/pin wear ratio registered among the remaining competing materials. This material arises as a promising alternative to be used in the stone cutting industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Oliveira LJ, Bobrovnitchii GS, Filgueira M (2007) Processing and characterization of impregnated diamond cutting tools using a ferrous metal matrix. Int J Refract Met Hard Mater 25:328–335. doi:10.1016/j.ijrmhm.2006.08.006

    Article  Google Scholar 

  2. Yamaguchi K, Takakura N, Imatani S (1997) Compaction and sintering characteristics of composite metal powders. J Mater Process Technol 63:364–369. doi:10.1016/S0924-0136(96)02648-9

    Article  Google Scholar 

  3. Boland JN, Li XS (2010) Microstructural characterisation and wear behaviour of diamond composite materials. Materials (Basel) 3:1390–1419. doi:10.3390/ma3021390

    Article  Google Scholar 

  4. Dhokey NB, Utpat K, Gosavi A, Dhoka P (2013) Hot-press sintering temperature response of diamond cutting tools and its correlation with wear mechanism. Int J Refract Met Hard Mater 36:289–293. doi:10.1016/j.ijrmhm.2012.10.008

    Article  Google Scholar 

  5. Henriques B, Soares D, Silva FS (2012a) Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal-ceramic dental restorations. J Mech Behav Biomed Mater 12:83–92. doi:10.1016/j.jmbbm.2012.03.015

    Article  Google Scholar 

  6. Henriques B, Gasik M, Souza JCM et al (2014) Mechanical and thermal properties of hot pressed CoCrMo-porcelain composites developed for prosthetic dentistry. J Mech Behav Biomed Mater 30:103–110. doi:10.1016/j.jmbbm.2013.10.023

    Article  Google Scholar 

  7. Miranda G, Carvalho O, Silva F, Soares D (2013) Effect of sintering stage in NiTi short-fibre-reinforced aluminium-silicon composites interface properties. J Compos Mater 47:1625–1631. doi:10.1177/0021998312449893

    Article  Google Scholar 

  8. Henriques B, Miranda G, Gasik M et al (2015a) Finite element analysis of the residual thermal stresses on functionally gradated dental restorations. J Mech Behav Biomed Mater 50:123–130. doi:10.1016/j.jmbbm.2015.06.003

    Article  Google Scholar 

  9. Henriques B, Gasik M, Miranda G et al (2015b) Improving the functional design of dental restorations by adding a composite interlayer in the multilayer system: multi-aspect analysis. Cienc e Tecnol dos Mater 27:36–40. doi:10.1016/j.ctmat.2015.06.002

    Google Scholar 

  10. Konstanty J (2005) Powder metallurgy diamond tools. Powder Metall Diam Tools. doi:10.1016/B978-185617440-4/50080-8

    Google Scholar 

  11. del Villar M, Muro P, Sánchez JM et al (2001) Consolidation of diamond tools using Cu-Co-Fe based alloys as metallic binders. Powder Met 44:82–90. doi:10.1179/003258901666211

    Article  Google Scholar 

  12. Cabral, S.C.; Filgueira M (2010) Mecanismo de Desgaste em Matriz Ferrítica com Adição de Diamantes. 2:1–8

  13. de Paula Barbosa A, Bobrovnitchii GS, ALD S et al (2010) Structure, microstructure and mechanical properties of PM Fe-Cu-Co alloys. Mater Des 31:522–526. doi:10.1016/j.matdes.2009.07.027

    Article  Google Scholar 

  14. Nitkiewicz Z, Swierzy M (2006) Tin influence on diamond-metal matrix hot pressed tools for stone cutting. J Mater Process Technol 175:306–315. doi:10.1016/j.jmatprotec.2005.04.056

    Article  Google Scholar 

  15. Tillmann W, Kronholz C, Ferreira M, et al (2010) Comparison of different metal matrix systems for diamond tools fabricated by new current induced short-time sintering processes. Proceeding Powder Metall. 2010 World Congr

  16. Henriques B, Soares D, Silva FS (2011) Shear bond strength of a hot pressed Au-Pd-Pt alloy-porcelain dental composite. J Mech Behav Biomed Mater 4:1718–1726. doi:10.1016/j.jmbbm.2011.05.029

    Article  Google Scholar 

  17. Henriques B, Soares D, Silva FS (2012b) Influence of preoxidation cycle on the bond strength of CoCrMoSi-porcelain dental composites. Mater Sci Eng C 32:2374–2380. doi:10.1016/j.msec.2012.07.010

    Article  Google Scholar 

  18. Borowiecka-Jamrozek J (2013) Engineering structure and properties of materials used as a matrix in diamond impregnated tools/Kształtowanie Struktury I Własnosci Materiałów Stosowanych Jako Osnowa W Narzedziach Metaliczno-Diamentowych. Arch Metall Mater 58:5–8. doi:10.2478/v10172-012-0142-0

    Google Scholar 

  19. Callister W, Rethwisch D (2007) Materials science and engineering: an introduction. Mater Sci Eng. doi:10.1016/0025-5416(87)90343-0

    Google Scholar 

  20. Mészáros M, Vadasdi K (1996) Process and equipment for electrochemical etching of diamond-containing Co-WC tools and recovery of diamond from used steel tools. Int J Refract Met Hard Mater 14:229–234. doi:10.1016/0263-4368(95)00024-0

    Article  Google Scholar 

  21. Chen X (2009) Machining dynamics in grinding processes. In: Cheng K (ed) Mach. Dyn. Fundam. Appl. Pract. Springer London, pp 232–262

  22. Yan J, Murakami Y, Davim J (2009) Tool design, tool wear and tool life. In: Cheng K (ed) Mach. Dyn. Fundam. Appl. Pract. Springer London, pp 116–149

  23. Tönshoff HK, Hillmann-Apmann H, Asche J (2002) Diamond tools in stone and civil engineering industry: cutting principles, wear and applications. Diam Relat Mater 11:736–741. doi:10.1016/S0925-9635(01)00561-1

    Article  Google Scholar 

  24. Wright DN, Wapler H, Tönshoff HK (1986) Investigations and prediction of diamond wear when sawing. CIRP Ann-Manuf Technol 35:239–244. doi:10.1016/S0007-8506(07)61879-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Henriques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henriques, B., Ferreira, P., Buciumeanu, M. et al. Copper–nickel-based diamond cutting tools: stone cutting evaluation. Int J Adv Manuf Technol 92, 1339–1348 (2017). https://doi.org/10.1007/s00170-017-0220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0220-6

Keywords

Navigation