Skip to main content
Log in

On semiring complexity of Schur polynomials

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

Semiring complexity is the version of arithmetic circuit complexity that allows only two operations: addition and multiplication. We show that semiring complexity of a Schur polynomial \({s_\lambda(x_1,\dots,x_k)}\) labeled by a partition \({\lambda=(\lambda_1\ge\lambda_2\ge\cdots)}\) is bounded by \({O(\log(\lambda_1))}\) provided the number of variables k is fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anders Björner, Michelle Wachs (1982) Bruhat order of Coxeter groups and shellability. Adv. in Math. 43(1): 87–100

    Article  MathSciNet  Google Scholar 

  • Anders Björner, Michelle L. Wachs (1988) Generalized quotients in Coxeter groups. Trans. Amer. Math. Soc. 308(1): 1–37

    Article  MathSciNet  Google Scholar 

  • Cy P. Chan, Vesselin Drensky, Alan Edelman, Raymond Kan & Plamen Koev (2008). On computing Schur functions and series thereof, preprint.

  • James Demmel, Plamen Koev (2006) Accurate and efficient evaluation of Schur and Jack functions. Math. Comp. 75(253): 223–239

    MathSciNet  MATH  Google Scholar 

  • Sergey Fomin, Dima Grigoriev, Gleb Koshevoy (2016) Subtraction-free complexity, cluster transformations, and spanning trees. Found. Comput. Math. 16(1): 1–31

    Article  MathSciNet  Google Scholar 

  • Dima Grigoriev, Gleb Koshevoy (2016) Complexity of tropical Schur polynomials. J. Symbolic Comput. 74: 46–54

    Article  MathSciNet  Google Scholar 

  • Mark Jerrum, Marc Snir (1982) Some exact complexity results for straight-line computations over semirings. J. Assoc. Comput. Mach. 29(3): 874–897

    Article  MathSciNet  Google Scholar 

  • Plamen Koev (2007) Accurate computations with totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 29(3): 731–751

    Article  MathSciNet  Google Scholar 

  • Ian G. Macdonald (2015). Symmetric functions and Hall polynomials. Oxford University Press, New York, 2nd edition.

  • Hariharan Narayanan (2006) On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients. J. Algebraic Combin. 24(3): 347–354

    Article  MathSciNet  Google Scholar 

  • Robert A. Proctor (1982) Classical Bruhat orders and lexicographic shellability. J. Algebra 77(1): 104–126

    Article  MathSciNet  Google Scholar 

  • Claus-Peter Schnorr (1976) A lower bound on the number of additions in monotone computations. Theoret. Comput. Sci. 2(3): 305–315

    Article  MathSciNet  Google Scholar 

  • Eli Shamir & Marc Snir (1977). Lower bounds on the number of multiplications and the number of additions in monotone computations. Technical Report RC-6757, IBM.

  • Richard P. Stanley (1999) Enumerative combinatorics. Vol. 2. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Volker Strassen (1972/73). Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten. Numer. Math. 20, 238–251.

  • Volker Strassen (1973) Vermeidung von Divisionen. J. Reine Angew. Math. 264: 184–202

    MathSciNet  MATH  Google Scholar 

  • Leslie G. Valiant (1980) Negation can be exponentially powerful. Theoret. Comput. Sci. 12(3): 303–314

    Article  MathSciNet  Google Scholar 

  • Michelle L. Wachs (2007). Poset topology: tools and applications. In Geometric combinatorics, volume 13 of IAS/Park City Math. Ser., 497–615. Amer. Math. Soc., Providence, RI.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dima Grigoriev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomin, S., Grigoriev, D., Nogneng, D. et al. On semiring complexity of Schur polynomials. comput. complex. 27, 595–616 (2018). https://doi.org/10.1007/s00037-018-0169-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-018-0169-3

Keywords

Subject classification

Navigation