Skip to main content
Log in

Effect of electrical conductivity and magnetization on the biomagnetic fluid flow over a stretching sheet

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The biomagnetic fluid flow (blood) over a stretching sheet in the presence of magnetic field is studied. For the mathematical formulation of the problem both magnetization and electrical conductivity of blood are taken into account and consequently both principles of magnetohydrodynamics (MHD) and ferrohydrodynamics (FHD) are adopted. The physical problem is described by a coupled, nonlinear system of ordinary differential equations subject to appropriate boundary conditions. This solution is obtained numerically by applying an efficient numerical technique based on finite differences method. The obtained results are presented graphically for different values of the parameters entering into the problem under consideration. Emphasis is given to the study of the effect of the MHD and FHD interaction parameters on the flow field. It is apparent that both parameters effect significantly on various characteristics of the flow and consequently neither electrical conductivity nor magnetization of blood could be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alimohamadi, H., Sadeghy, K.: On the use of magnetic fields for controlling the temperature of hot spots on porous plaques in stenosis arteries. Nihon Reoroji Gakkaishi 43(5), 135–144 (2015)

    Article  Google Scholar 

  2. Misra, J.C., Sinha, A., Shit, G.C.: Flow of a biomagnetic viscoelastic fluid: application to estimate of blood flow in arteries during electromagnetic hyperthermia, a therapeutic procedure for cancer treatment. Appl. Math. Mech. Engl. Ed. 31(11), 1405–1420 (2010). doi:10.1007/s10483-010-1371-6

    Article  MATH  Google Scholar 

  3. Haik, Y., Pai, V., Chen, C.J.: Development of magnetic device for cell separation. J. Magn. Magn. Mater. 194(1), 254–261 (1999)

    Article  Google Scholar 

  4. Haik, Y., Chen, J.C., Pai, V.M.: Development of biomagnetic fluid dynamics. In: Proceedings of the IX International Symposium on Transport Properties in Thermal Fluid Engineering, Singapore, Pacific Center of Thermal Fluid Engineering, 25–28 June, pp. 121–126 (1996)

  5. Rosensweig, R.E.: Magnetic fluids. Ann. Rev. Fluid Mech. 19, 437–461 (1987)

    Article  MATH  Google Scholar 

  6. Tzirtzilakis, E.E.: A mathematical model for blood flow in magnetic field. Phys. Fluids 17(7), 077103 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crane, L.J.: Flow past a stretching plate. J. Appl. Math. Phys. (ZAMP) 21, 645–647 (1970)

    Article  Google Scholar 

  8. Anderson, H.I.: An exact solution of the Navier–Stokes equations for magnetohydrodynamics flow. Acta Mech. 113, 241–244 (1995)

    Article  MathSciNet  Google Scholar 

  9. Jat, R.N., Chaudhary, S.: Radiation effects on the MHD flow near the stagnation point of a stretching sheet. Z. Angew. Math. Phys. 61, 1151–1154 (2010). doi:10.1007/s00033-010-0072-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Pop, I., Ishak, A., Aman, F.: Radiation effects on the MHD flow near the stagnation point of a stretching sheet: revisited. Z. Angew. Math. Phys. 62, 953–956 (2011). doi:10.1007/s00033-011-0131-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, S., Chakraborty, S., Jana, R.N., Makinde, O.D.: Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition. Appl. Math. Mech. (Engl. Ed.) 36(12), 1593–1610 (2015). doi:10.1007/s10483-015-2003-6

    Article  MathSciNet  Google Scholar 

  12. Dandapat, B.S., Santra, B., Singh, S.K.: Thin film flow over a non-linear stretching sheet in presence of uniform transverse magnetic field. Z. Angew. Math. Phys. 61, 685–695 (2010). doi:10.1007/s00033-010-0074-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Misra, J.C., Shit, G.C., Rath, H.J.: Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: some applications to haemodynamics. Comput. Fluids 37(1), 1–11 (2008)

    Article  MATH  Google Scholar 

  14. Andersson, H.I., Valnes, O.A.: Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech. 128(1), 39–47 (1998)

    Article  MATH  Google Scholar 

  15. Zeeshan, A., Majeed, A., Ellahi, R.: Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. J. Mol. Liq. 215, 549–554 (2016)

    Article  Google Scholar 

  16. Tzirtzilakis, E.E., Kafoussias, N.G.: Three dimensional magnetic fluid boundary layer flow over a linearly stretching sheet. J. Heat Transf. 132(1), 1–8 (2010)

    Article  Google Scholar 

  17. Tzirtzilakis, E.E., Kafoussias, N.G.: Biomagnetic fluid flow over a stretching sheet with nonlinear temperature dependent magnetization. Z. Angew. Math. Phys. (ZAMP) 54(4), 551–565 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tzirtzilakis, E.E., Tanoudis, G.B.: Numerical study of biomagnetic fluid flow over a stretching sheet with heat transfer. Int. J. Numer. Methods Heat Fluid flow 13(7), 830–848 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Misra, J.C., Shit, G.C.: Biomagnetic viscoelastic fluid flow over a stretching sheet. Appl. Math. Comput. 210(2), 350–361 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Kafoussias, N.G., Williams, E.W.: An improved approximation technique to obtain numerical solution of a class of two-point boundary value similarity problems in fluid mechanics. Int. J. Numer. Methods Fluids 17(2), 145–162 (1993)

    Article  MATH  Google Scholar 

  21. Tzirtzilakis, E.E., Xenos, M.A.: Biomagnetic fluid flow in a driven cavity. Meccanica 48(1), 187–200 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Matsuki, H., Yamasawa, K., Murakami, K.: Experimental considerations on a new automatic cooling device using temperature sensitive magnetic fluid. IEEE Trans. Magn. 13(5), 1143–1145 (1977)

    Article  Google Scholar 

  23. Tzirtzilakis, E.E.: A simple numerical methodology for BFD problems using stream function vorticity formulation. Commun. Numer. Methods Eng. 24(8), 683–700 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tzirtzilakis, E.E.: Biomagnetic fluid flow in an aneurysm using ferrohydynamics principles. Phys. Fluids 27(6), 061902 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Tzirtzilakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murtaza, M.G., Tzirtzilakis, E.E. & Ferdows, M. Effect of electrical conductivity and magnetization on the biomagnetic fluid flow over a stretching sheet. Z. Angew. Math. Phys. 68, 93 (2017). https://doi.org/10.1007/s00033-017-0839-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0839-z

Mathematics Subject Classification

Keywords

Navigation