Skip to main content

Advertisement

Log in

High accumulation in tobacco seeds of hemagglutinin antigen from avian (H5N1) influenza

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Tobacco seeds can be used as a cost effective system for production of recombinant vaccines. Avian influenza is an important respiratory pathogen that causes a high degree of mortality and becomes a serious threat for the poultry industry. A safe vaccine against avian flu produced at low cost could help to prevent future outbreaks. We have genetically engineered tobacco plants to express extracellular domain of hemagglutinin protein from H5N1 avian influenza virus as an inexpensive alternative for production purposes. Two regulatory sequences of seed storage protein genes from Phaseolus vulgaris L. were used to direct the expression, yielding 3.0 mg of the viral antigen per g of seeds. The production and stability of seed-produced recombinant HA protein was characterized by different molecular techniques. The aqueous extract of tobacco seed proteins was used for subcutaneous immunization of chickens, which developed antibodies that inhibited the agglutination of erythrocytes after the second application of the antigen. The feasibility of using tobacco seeds as a vaccine carrier is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arcalis E, Ibl V, Peters J, Melnik S, Stoger E (2014) The dynamic behavior of storage organelles in developing cereal seeds and its impact on the production of recombinant proteins. Front Plant Sci 5:1–12

  • Bertran K, Thomas C, Guo X, Bublot M et al (2015) Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens. Vaccine 33:3456–3462. doi:10.1016/j.vaccine.2015.05.076

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cabrera G, Salazar V, Montesino R, Tambara Y et al (2016) Structural characterization and biological implications of sulfated N-glycans in a serine protease from the neotropical moth Hylesia metabus (Cramer [1775]) (Lepidoptera: Saturniidae). Glycobiology 26:230–250. doi:10.1093/glycob/cwv096

    CAS  PubMed  Google Scholar 

  • Cardoso FM, Ibañez LI, Van den Hoecke S, De Baets S et al (2014) Single-domain antibodies targeting neuraminidase protect against an H5N1 influenza virus challenge. J Virol 88:8278–8296

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho A, Wrammert J (2016) Implications of broadly neutralizing antibodies in the development of a universal influenza vaccine. Curr Opin Virol 17:110–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cinatl J, Michaelis M, Doerr HW (2007) The threat of avian influenza A (H5N1). Part IV: development of vaccines. Med Microbiol Immunol 196:213–225

    Article  CAS  PubMed  Google Scholar 

  • D’Aoust MA, Lavoie PO, Couture MMJ, Trépanier S et al (2008) Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J 6:930–940

    Article  PubMed  Google Scholar 

  • D’Aoust MA, Couture MMJ, Charland N, Trepanier S, Landry N, Ors F, Vézina LP (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 8:607–619

    Article  PubMed  Google Scholar 

  • De Jaeger G, Scheffer S, Jacobs A, Zambre M et al (2002) Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nat Biotechnol 20:1265–1268

    Article  PubMed  Google Scholar 

  • De Meyer T, Depicker A (2014) Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana. Front Plant Sci 5:1–7

  • De Wilde K, De Buck S, Vanneste K, Depicker A (2013) Recombinant antibody production in Arabidopsis seeds triggers an unfolded protein response. Plant Physiol 161:1021–1033

    Article  PubMed  Google Scholar 

  • Drakakaki G, Marcel S, Arcalis E, Altmann F et al (2006) The intracellular fate of a recombinant protein is tissue dependent. Plant Physiol 141:578–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Khan FA, Pandupuspitasari NS, Ahmed MM et al (2015) Recent developments in therapeutic protein expression technologies in plants. Biotechnol Lett 37:265–279

    Article  CAS  PubMed  Google Scholar 

  • Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS (2006) Strategies for mitigating an influenza pandemic. Nature 442:448–452

    Article  CAS  PubMed  Google Scholar 

  • Fitchette-Lainé AC, Gomord V, Cabanes M, Michalski JC et al (1997) N-Glycans harboring the Lewis a epitope are expressed at the surface of plant cells. Plant J 12:1411–1417

    Article  PubMed  Google Scholar 

  • Franconi R, Massa S, Illiano E, Muller A et al (2006) Exploiting the plant secretory pathway to improve the anti-cancer activity of a plant-derived HPV16 E7 vaccine. Int J Immunopathol Pharmacol 19:187

    CAS  PubMed  Google Scholar 

  • Guile GR, Rudd PM, Wing DR, Prime SB, Dwek RA (1996) A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem 240:210–226

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Shaikh AC, Chaphalkar SR (2017) Aqueous extract of Calamus rotang as a novel immunoadjuvant enhances both humoral and cell mediated immune response. J Herbmed Pharmacol 6:43–48

  • Hannoun C, Megas F, Piercy J (2004) Immunogenicity and protective efficacy of influenza vaccination. Virus Res 103:133–138

    Article  CAS  PubMed  Google Scholar 

  • Harvey DJ, Crispin M, Moffatt BE, Smith SL, Sim RB, Rudd PM, Dwek RA (2009) Identification of high-mannose and multiantennary complex-type N-linked glycans containing alpha-galactose epitopes from Nurse shark IgM heavy chain. Glycoconj J 26:1055–1064. doi:10.1007/s10719-008-9226-5

    Article  CAS  PubMed  Google Scholar 

  • Hernández A, López A, Ceballo Y, Rosabal L et al (2013) High-level production and aggregation of hepatitis B surface antigen in transgenic tobacco seeds. Biotecnol Apl 30:97–100

    Google Scholar 

  • Hernández A, López A, Ceballo Y, Cabrera G et al (2015) Tobacco seeds as efficient production platform for a biologically active anti-HBsAg monoclonal antibody. Transgenic Res 24:897–909

    Article  Google Scholar 

  • Hien TT, Liem NT, Dung NT, San LT et al (2004) Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med 350:1179–1188

    Article  CAS  Google Scholar 

  • Hofbauer A, Stoger E (2013) Subcellular accumulation and modification of pharmaceutical proteins in different plant tissues. Curr Pharm Des 19:5495–5502

    Article  CAS  PubMed  Google Scholar 

  • Hofbauer A, Melnik S, Tschofen M, Arcalis E et al (2016) The encapsulation of hemagglutinin in protein bodies achieves a stronger immune response in mice than the soluble antigen. Front Plant Sci 7:142. doi:10.3389/fpls.2016.00142

    Article  PubMed  PubMed Central  Google Scholar 

  • Horsch R, Klee H (1986) Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: role of T-DNA borders in the transfer process. Proc Natl Acad Sci 83:4428–4432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson LC, Garg R, Bost KL, Piller KJ (2014) Soybean seeds: a practical host for the production of functional subunit vaccines. Biomed Res Int 2014:340804. doi:10.1155/2014/340804

    Article  PubMed  PubMed Central  Google Scholar 

  • Infl WA, Manu U (2002) WHO manual on animal influenza diagnosis and surveillance. World Health Organization, Geneva

    Google Scholar 

  • Jiao P, Song H, Liu X, Song Y et al (2016) Pathogenicity, transmission and antigenic variation of H5N1 highly pathogenic avian influenza viruses. Front Microbiol 7:635

    PubMed  PubMed Central  Google Scholar 

  • Kalthoff D, Giritch A, Geisler K, Bettmann U et al (2010) Immunization with plant-expressed hemagglutinin protects chickens from lethal highly pathogenic avian influenza virus H5N1 challenge infection. J Virol 84:12002–12010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapczynski DR, Tumpey TM, Hidajat R, Zsak A, Chrzastek K, Tretyakova I, Pushko P (2016) Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses. Vaccine 34:1575–1581. doi:10.1016/j.vaccine.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JI, Lee I, Park S, Hwang M-W et al (2013) Genetic requirement for hemagglutinin glycosylation and its implications for influenza A H1N1 virus evolution. J Virol 87:7539–7549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klenk HD (2014) Influenza viruses en route from birds to man. Cell Host Microbe 15:653–654

    Article  CAS  PubMed  Google Scholar 

  • Landry N, Ward BJ, Trepanier S, Montomoli E, Dargis M, Lapini G, Vezina LP (2010) Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS ONE 5:e15559. doi:10.1371/journal.pone.0015559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé A-C, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    Article  CAS  PubMed  Google Scholar 

  • Liu YV, Massare MJ, Pearce MB, Sun X et al (2015) Recombinant virus-like particles elicit protective immunity against avian influenza A (H7N9) virus infection in ferrets. Vaccine 33:2152–2158

    Article  CAS  PubMed  Google Scholar 

  • Macioła AK, Pietrzak MA, Kosson P, Czarnocki-Cieciura M, Śmietanka K, Minta Z, Kopera E (2017) The length of N-glycans of recombinant H5N1 hemagglutinin influences the oligomerization and immunogenicity of vaccine antigen. Front Immunol 8:444

    Article  PubMed  PubMed Central  Google Scholar 

  • Major D, Chichester JA, Pathirana RD, Guilfoyle K et al (2015) Intranasal vaccination with a plant-derived H5 HA vaccine protects mice and ferrets against highly pathogenic avian influenza virus challenge. Hum Vaccin Immunother 11:1235–1243

    PubMed  PubMed Central  Google Scholar 

  • Mallajosyula VV, Citron M, Ferrara F, Lu X et al (2014) Influenza hemagglutinin stem–fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc Natl Acad Sci 111:E2514–E2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsian J, Lomonossoff GP (2016) Molecular pharming—VLPs made in plants. Curr Opin Biotechnol 37:201–206

    Article  CAS  PubMed  Google Scholar 

  • Medina RA, García-Sastre A (2011) Influenza A viruses: new research developments. Nat Rev Microbiol 9:590–603

    Article  CAS  PubMed  Google Scholar 

  • Melo NS, Nimtz M, Conradt HS, Fevereiro PS, Costa J (1997) Identification of the human Lewisa carbohydrate motif in a secretory peroxidase from a plant cell suspension culture (Vaccinium myrtillus L.). FEBS Lett 415:186–191

    Article  CAS  PubMed  Google Scholar 

  • Mett V, Musiychuk K, Bi H, Farrance CE et al (2008) A plant-produced influenza subunit vaccine protects ferrets against virus challenge. Influenza Other Respir Viruses 2:33–40. doi:10.1111/j.1750-2659.2008.00037.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinari N-AM, Ortega-Sanchez IR, Messonnier ML, Thompson WW, Wortley PM, Weintraub E, Bridges CB (2007) The annual impact of seasonal influenza in the US: measuring disease burden and costs. Vaccine 25:5086–5096

    Article  PubMed  Google Scholar 

  • Morandini F, Avesani L, Bortesi L, Van Droogenbroeck B et al (2011) Non-food/feed seeds as biofactories for the high-yield production of recombinant pharmaceuticals. Plant Biotechnol J 9:911–921

    Article  CAS  PubMed  Google Scholar 

  • Nahampun HN, Bosworth B, Cunnick J, Mogler M, Wang K (2015) Expression of H3N2 nucleoprotein in maize seeds and immunogenicity in mice. Plant Cell Rep 34:969–980. doi:10.1007/s00299-015-1758-0

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Noda T, Kawaoka Y (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459:931–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peeters B, Reemers S, Dortmans J, de Vries E et al (2017) Genetic versus antigenic differences among highly pathogenic H5N1 avian influenza A viruses: consequences for vaccine strain selection. Virology 503:83–93

    Article  CAS  PubMed  Google Scholar 

  • Petruccelli S, Otegui MS, Lareu F, Tran Dinh O et al (2006) A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Plant Biotechnol J 4:511–527

    CAS  PubMed  Google Scholar 

  • Phan HT, Pohl J, Floss DM, Rabenstein F et al (2013) ELPylated haemagglutinins produced in tobacco plants induce potentially neutralizing antibodies against H5N1 viruses in mice. Plant Biotechnol J 11:582–593

    Article  CAS  PubMed  Google Scholar 

  • Phan HT, Hause B, Hause G, Arcalis E et al (2014) Influence of elastin-like polypeptide and hydrophobin on recombinant hemagglutinin accumulations in transgenic tobacco plants. PLoS ONE 9:e99347. doi:10.1371/journal.pone.0099347

    Article  PubMed  PubMed Central  Google Scholar 

  • Pietrzak M, Macioła A, Zdanowski K, Protas-Klukowska AM et al (2016) An avian influenza H5N1 virus vaccine candidate based on the extracellular domain produced in yeast system as subviral particles protects chickens from lethal challenge. Antiviral Res 133:242–249

    Article  CAS  PubMed  Google Scholar 

  • Pose AG, Gomez JN, Sanchez AV, Redondo AV et al (2011) Subunit influenza vaccine candidate based on CD154 fused to HAH5 increases the antibody titers and cellular immune response in chickens. Vet Microbiol 152:328–337. doi:10.1016/j.vetmic.2011.05.033

    Article  CAS  PubMed  Google Scholar 

  • Ramos OS, Pose AG, Gómez-Puerta S, Gomez JN et al (2011) Avian CD154 enhances humoral and cellular immune responses induced by an adenovirus vector-based vaccine in chickens. Comp Immunol Microbiol Infect Dis 34:259–265

    Article  Google Scholar 

  • Rayon C, Lerouge P, Faye L (1998) The protein N-glycosylation in plants. J Exp Bot 49:1463–1472

    Article  CAS  Google Scholar 

  • Reperant LA, Moesker FM, Osterhaus AD (2016) Influenza: from zoonosis to pandemic. ERJ Open Res 2:00013–02016

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi L, Pinotti L, Agazzi A, Dell’Orto V, Baldi A (2014) Plant bioreactors for the antigenic hook-associated flgK protein expression. Ital J Anim Sci 13:2939

    Article  Google Scholar 

  • Sack M, Hofbauer A, Fischer R, Stoger E (2015) The increasing value of plant-made proteins. Curr Opin Biotechnol 32:163–170

    Article  CAS  PubMed  Google Scholar 

  • Samyn-Petit B, Gruber V, Flahaut C, Wajda-Dubos J-P et al (2001) N-glycosylation potential of maize: the human lactoferrin used as a model. Glycoconj J 18:519–527

    Article  CAS  PubMed  Google Scholar 

  • Samyn-Petit B, Wajda Dubos JP, Chirat F, Coddeville B et al (2003) Comparative analysis of the site-specific N-glycosylation of human lactoferrin produced in maize and tobacco plants. FEBS J 270:3235–3242

    CAS  Google Scholar 

  • Seitz C, Isken B, Heynisch B, Rettkowski M, Frensing T, Reichl U (2012) Trypsin promotes efficient influenza vaccine production in MDCK cells by interfering with the antiviral host response. Appl Microbiol Biotechnol 93:601–611

    Article  CAS  PubMed  Google Scholar 

  • Shoji Y, Bi H, Musiychuk K, Rhee A et al (2009a) Plant-derived hemagglutinin protects ferrets against challenge infection with the A/Indonesia/05/05 strain of avian influenza. Vaccine 27:1087–1092. doi:10.1016/j.vaccine.2008.11.108

    Article  CAS  PubMed  Google Scholar 

  • Shoji Y, Farrance CE, Bi H, Shamloul M et al (2009b) Immunogenicity of hemagglutinin from A/Bar-headed Goose/Qinghai/1A/05 and A/Anhui/1/05 strains of H5N1 influenza viruses produced in Nicotiana benthamiana plants. Vaccine 27:3467–3470. doi:10.1016/j.vaccine.2009.01.051

    Article  CAS  PubMed  Google Scholar 

  • Shoji Y, Prokhnevsky A, Leffet B, Vetter N et al (2015) Immunogenicity of H1N1 influenza virus-like particles produced in Nicotiana benthamiana. Hum Vaccin Immunother 11:118–123. doi:10.4161/hv.34365

    Article  PubMed  Google Scholar 

  • Soema PC, Kompier R, Amorij JP, Kersten GF (2015) Current and next generation influenza vaccines: formulation and production strategies. Eur J Pharm Biopharm 94:251–263. doi:10.1016/j.ejpb.2015.05.023

    Article  CAS  PubMed  Google Scholar 

  • Sourrouille C, Marquet-Blouin E, D’Aoust MA, Kiefer-Meyer MC et al (2008) Down-regulated expression of plant-specific glycoepitopes in alfalfa. Plant Biotechnol J 6:702–721

    Article  CAS  PubMed  Google Scholar 

  • Spitsin S, Andrianov V, Pogrebnyak N, Smirnov Y et al (2009) Immunological assessment of plant-derived avian flu H5/HA1 variants. Vaccine 27:1289–1292

    Article  CAS  PubMed  Google Scholar 

  • Tate MD, Job ER, Deng Y-M, Gunalan V, Maurer-Stroh S, Reading PC (2014) Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6:1294–1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Topp E, Irwin R, McAllister T, Lessard M et al (2016) The case for plant-made veterinary immunotherapeutics. Biotechnol Adv. doi:10.1016/j.biotechadv.2016.02.007

    PubMed  Google Scholar 

  • Tschofen M, Knopp D, Hood E, Stöger E (2016) Plant molecular farming: much more than medicines. Annu Rev Anal Chem 9:271–294

    Article  Google Scholar 

  • Vamvaka E, Twyman RM, Murad AM, Melnik S et al (2016) Rice endosperm produces an underglycosylated and potent form of the HIV-neutralizing monoclonal antibody 2G12. Plant Biotechnol J 14:97–108

    Article  CAS  PubMed  Google Scholar 

  • Van Droogenbroeck B, Cao J, Stadlmann J, Altmann F et al (2007) Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc Natl Acad Sci 104:1430–1435

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Kerkhove MD, Mumford E, Mounts AW, Bresee J, Ly S, Bridges CB, Otte J (2011) Highly pathogenic avian influenza (H5N1): pathways of exposure at the animal–human interface, a systematic review. PLoS ONE 6:e14582

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Jiang D, Shi J, Yang D (2017) Expression of α-1,6-fucosyltransferase (FUT8) in rice grain and immunogenicity evaluation of plant-specific glycans. J Biotechnol 242:111–121

    Article  CAS  PubMed  Google Scholar 

  • Ward BJ, Landry N, Trépanier S, Mercier G et al (2014) Human antibody response to N-glycans present on plant-made influenza virus-like particle (VLP) vaccines. Vaccine 32:6098–6106

    Article  CAS  PubMed  Google Scholar 

  • Wei C-J, Xu L, Kong W-P, Shi W et al (2008) Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus. J Virol 82:6200–6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weldon WC, Wang B-Z, Martin MP, Koutsonanos DG, Skountzou I, Compans RW (2010) Enhanced immunogenicity of stabilized trimeric soluble influenza hemagglutinin. PLoS ONE 5:e12466

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao N, Ai L, Dong Y, Liu X et al (2016) Expression of recombinant human anti-TNF-α scFv-Fc in Arabidopsis thaliana seeds. Genet Mol Res 15:1–9

  • Yassine HM, Boyington JC, McTamney PM, Wei C-J et al (2015) Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat Med 21:1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Young KR, Arthus-Cartier G, Yam KK, Lavoie P-O et al (2015) Generation and characterization of a trackable plant-made influenza H5 virus-like particle (VLP) containing enhanced green fluorescent protein (eGFP). FASEB J 29:3817–3827

    Article  CAS  PubMed  Google Scholar 

  • Yusibov V, Kushnir N, Streatfield SJ (2016) Antibody production in plants and green algae. Annu Rev Plant Biol 67:669–701

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Chen S, Jiang Y, Huang K et al (2015) Hemagglutinin glycosylation modulates the pathogenicity and antigenicity of the H5N1 avian influenza virus. Vet Microbiol 175:244–256. doi:10.1016/j.vetmic.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Liang L, Wang S, Nakao T et al (2017) Glycosylation of the hemagglutinin protein of H5N1 influenza virus increases its virulence in mice by exacerbating the host immune response. J Virol 91:e02215–e02216

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Department of Plant Systems Biology of Ghent University Belgium for supplying the signals for expression in seeds. In addition, we would like to extend our appreciation to the staff of the National Centre for Animal and Plant Health (CENSA), Cuba for their help with immunization of chickens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanaysi Ceballo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceballo, Y., Tiel, K., López, A. et al. High accumulation in tobacco seeds of hemagglutinin antigen from avian (H5N1) influenza. Transgenic Res 26, 775–789 (2017). https://doi.org/10.1007/s11248-017-0047-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-017-0047-9

Keywords

Navigation