TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN
Online ISSN : 1884-0485
ISSN-L : 1884-0485
a) Chemical Propulsion and Air-breathing Engines
Hybrid Rocket Performance Prediction with Coupling Method of CFD and Thermal Conduction Calculation
Yuki FUNAMIToru SHIMADA
Author information
JOURNAL FREE ACCESS

2012 Volume 10 Issue ists28 Pages Pa_71-Pa_76

Details
Abstract

The final purpose of this study is to develop a design tool for hybrid rocket engines. This tool is a computer code which will be used in order to investigate rocket performance characteristics and unsteady phenomena lasting through the burning time, such as fuel regression or combustion oscillation. When phenomena inside a combustion chamber, namely boundary layer combustion, are described, it is difficult to use rigorous models for this target. It is because calculation cost may be too expensive. Therefore simple models are required for this calculation. In this study, quasi-one-dimensional compressible Euler equations for flowfields inside a chamber and the equation for thermal conduction inside a solid fuel are numerically solved. The energy balance equation at the solid fuel surface is solved to estimate fuel regression rate. Heat feedback model is Karabeyoglu's model dependent on total mass flux. Combustion model is global single step reaction model for 4 chemical species or chemical equilibrium model for 9 chemical species. As a first step, steady-state solutions are reported.

Content from these authors
© 2012 The Japan Society for Aeronautical and Space Sciences
Previous article Next article
feedback
Top