Skip to main content
Log in

Mutual Information-Based Tracking for Multiple Cameras and Multiple Planes

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Based on mutual information (MI), this paper proposes a systematic analysis of tracking a multi-plane object with multiple cameras. Firstly, a geometric model consisting of a piecewise planar object and multiple cameras is setup. Given an initial pose guess, the method seeks a pose update that maximizes the global MI of all the pairs of reference image and camera image. An object pose-dependent warp is proposed to ensure computation precision. Six variations of the proposed method are designed and tested. Mode 1, i.e., computing the 2nd-order Hessian of MI at each step as the object pose changes, leads to the highest convergence rates; Mode 2, i.e., computing the 1st-order Hessian of MI once at the beginning, occupies the least time (0.5–1.0 s). For objects with simple-textured planes, applying Gaussian blur first and then use Mode 1 shall generate the highest convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michel, D.; Panagiotakis, C.; Argyros, A.A.: Tracking the articulated motion of the human body with two RGBD cameras. Mach. Vis. Appl. 26(1), 41–54 (2015). doi:10.1007/s00138-014-0651-0

    Article  Google Scholar 

  2. Luo, X.; Wang, F.; Luo, M.: Collaborative target tracking in lopor with multi-camera. Opt. Int. J. Light Electron Opt. 127(23), 11588–11598 (2016)

    Article  Google Scholar 

  3. Munaro, M.; Basso, F.; Menegatti, E.: Openptrack: open source multi-camera calibration and people tracking for rgb-d camera networks. Robot. Auton. Syst. 75, 525–538 (2015)

    Article  Google Scholar 

  4. Elsheikh, E.A.; El-Bardini, M.A.; Fkirin, M.A.: Practical design of a path following for a non-holonomic mobile robot based on a decentralized fuzzy logic controller and multiple cameras. Arab. J. Sci. Eng. 41(8), 3215–3229 (2016)

    Article  Google Scholar 

  5. Hassnawi, L.A.; Ahmad, R.B.; Yahya, A.; Aljunid, S.A.; Ali, Z.G.; Ibraheem, Z.T.: A new design for a motorway surveillance system using a wireless ad-hoc camera network to improve safety. Arab. J. Sci. Eng. 39(4), 2783–2797 (2014)

    Article  Google Scholar 

  6. Benhimane, S.; Malis, E.: Homography-based 2d visual tracking and servoing. Int. J. Robot. Res. 26(7), 661–676 (2007)

    Article  Google Scholar 

  7. Hadi, R.A.; George, L.E.; Mohammed, M.J.: A computationally economic novel approach for real-time moving multi-vehicle detection and tracking toward efficient traffic surveillance. Arab. J. Sci. Eng. 42(2), 817–831 (2016)

    Article  Google Scholar 

  8. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  9. Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  10. Fischler, M.A.; Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  11. Huber, P.J.: International Encyclopedia of Statistical Science. In: Lovric, M. (ed.) Robust Statistics, pp 1248–1251. Springer, Berlin (2011)

    Google Scholar 

  12. Baker, S.; Matthews, I.: Lucas-kanade 20 years on: A unifying framework. Int. J. Comput. Vis. 56(3), 221–255 (2004)

    Article  Google Scholar 

  13. Richa, R.; Sznitman, R.; Taylor, R.; Hager, G.: Visual tracking using the sum of conditional variance. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ In: International Conference On, pp. 2953–2958. IEEE (2011)

  14. Wei, S.D.; Lai, S.H.: Fast template matching based on normalized cross correlation with adaptive multilevel winner update. IEEE Trans. Image Process. 17(11), 2227–2235 (2008)

    Article  MathSciNet  Google Scholar 

  15. Cover, T.M.; Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  16. Kuijper, A.: Mutual information aspects of scale space images. Pattern Recognit. 37(12), 2361–2373 (2004). doi:10.1016/j.patcog.2004.04.014

    Article  MATH  Google Scholar 

  17. Viola, P.; Wells III, W.M.: Alignment by maximization of mutual information. Int. J. Comput. Vis. 24(2), 137–154 (1997)

    Article  Google Scholar 

  18. Dame, A.; Marchand, E.: Second-order optimization of mutual information for real-time image registration. IEEE Trans. Image Process. 21(9), 4190–4203 (2012)

    Article  MathSciNet  Google Scholar 

  19. Cheah, T.C.; Shanmugam, S.A.; Mann, K.A.L.: Medical image registration by maximizing mutual information based on combination of intensity and gradient information. In: Biomedical Engineering (ICoBE), 2012 International Conference on, pp. 368–372. IEEE (2012)

  20. Deriche, M.: An image quality index based on mutual information and neural networks. Arab. J. Sci. Eng. 39(3), 1983–1993 (2014)

    Article  Google Scholar 

  21. Ellis, A.L.; Ferryman, J.: Biologically-inspired robust motion segmentation using mutual information. Comput. Vis. Image Underst. 122(122), 47C64 (2014)

    Google Scholar 

  22. Caron, G.; Dame, A.; Marchand, E.: Direct model based visual tracking and pose estimation using mutual information. Image Vis. Comput. 32(1), 54–63 (2013)

    Article  Google Scholar 

  23. Panin, G.; Knoll, A.: Mutual information-based 3d object tracking. Int. J. Comput. Vis. 78(1), 107–118 (2008)

    Article  Google Scholar 

  24. Fraissinet-Tachet, M.: Mutual information-based piecewise planar object tracking. Master’s thesis (2014). http://bibcd.igd.fraunhofer.de/bibcd/INI_Science/theses/2014/Fraissinet_Master.pdf

  25. Fraissinet-Tachet, M.; Schmitt, M.; Wen, Z.; Kuijper, A.: Multi-camera piecewise planar object tracking with mutual information. J. Math. Imaging Vis. 56(3), 591–602 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Delabarre, B.; Marchand, E.: Camera localization using mutual information-based multiplane tracking. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pp. 1620–1625. IEEE (2013)

  27. Thévenaz, P.; Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Trans. Image Process. 9(12), 2083–2099 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjan Kuijper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Kuijper, A., Fraissinet-Tachet, M. et al. Mutual Information-Based Tracking for Multiple Cameras and Multiple Planes. Arab J Sci Eng 42, 3451–3463 (2017). https://doi.org/10.1007/s13369-017-2541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2541-z

Keywords

Navigation