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Abstract

The inclusion of anisotropic surface free energy and anisotropic linear interface ki-

netics in phase-field models is studied for the solidification of a pure material. The

formulation is described for a two-dimensional system with a smooth crystal-melt in-

terface and for a surface free energy that varies smoothly with orientation, in which

case a quite general dependence of the surface free energy and kinetic coefficient on

orientation can be treated; it is assumed that the anisotropy is mUd enough that miss-

ing orientations do not occur. The method of matched asymptotic expansions is used

to recover the appropriate anisotropic form of the Gibbs-Thomson equation in the

sharp-interface limit in which the width of the diffuse interface is thin compared to its

local radius of curvature. It is found that the surface free energy and the thickness of

the diffuse interface have the same anisotropy, whereas the kinetic coefficient has an

anisotropy characterized by the product of the interface thickness with the intrinsic

mobility of the phase field.

’Permanent address: School of Mathematics, University of Bristol, Bristol BS8 ITW, U.K.

1 Technology Administration, U.S. Department of Commerce, Washington D.C.

^Consultant, National Institute of Standards and Technology
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1 Introduction

Phase-field models [1, 2, 3, 4, 5, 6] provide a convenient basis for the numerical solution of

complicated solidification problems. In a phase-field model, in addition to the customary

energy and/or concentration variables, an additional variable, the phase field, if, is intro-

duced to label exphcitly the liquid and sohd phases. The phase field takes on a constant

value in each bulk phase, e.g. ip = 0 in the sohd phase and c/? — 1 in the liquid phase.

The transformation from solid to liquid occurs over a thin transition region where ip varies

smoothly from zero to one. The usual thermodynamic functions describing the system can

then be modified to incorporate gradient energy terms; in particular, terms proportional to

|V(,c>p can contribute to the surface excess quantities that play a fundamental role in Gibbs’

formulation of surface thermodynamics [7]. In this sense, phase-field models are natural

outgrowths of diffuse-interface models dating back to work by Van der Waals [8], by Cahn

and Allen [9, 10], and by Cahn and Hilhard [11, 12]. From a computational viewpoint,

phase-field models are similar in some ways to the enthalpy method [13], in that explicit

tracking of the solid-hquid interface is avoided. Phase-field models, however, are more ver-

satile than enthalpy methods since such effects as undercoohng of the melt and departures

from thermodynamic equilibrium at the interface are included automatically (see, e.g., [14]).

An important example of the utility of phase-field models is given by the numerical studies

of dendritic growth by Kobayashi [15, 16, 17, 18] and by Wheeler, Murray, and Schaefer [19].

The phase-field treatments seem to capture successfully a broad variety of dendritic growth

phenomena, including the correct relation between Peclet number and undercooling, the

emission of sidearms, and the coarsening behavior of sidearms that are further removed from

the tip. The anisotropy of surface free energy or of interface kinetics is generally thought to

play a fundamental role in the dynamics of dendritic growth [20, 21].

Since in a phase-field formulation the interface is diffuse, the proper incorporation of sur-

face free energy anisotropy requires careful consideration. Phase field models with anisotropy

have been considered previously for specific choices of gradient energy. Caginalp and Fife

[22, 23] have considered models in which the isotropic “square gradient” expression is replaced

by a more general quadratic form with different coefficients in each coordinate direction. For
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an isothermal system this leads to an elliptical equilibrium shape. In order to obtain more

complicated anisotropies, Langer [2] proposed the addition to the gradient energy of terms

involving the squares of higher derivatives of the phase field, and gave an example leading to

cubic anisotropy. Cahn and Kikuchi [24] have considered discrete forms of diffuse interface

models, and have also included anisotropic effects through the choice of nearest-neighbor in-

teractions (see also [25, 26]). Both Kobayashi [17] and Wheeler et al. [19] include anisotropy

by allowing the coefficient of the gradient energy to depend on the local orientation of the

gradient of the phase field. Early numerical calculations were performed by Smith [27] and

by Umantsev et al. [28] in which no explicit anisotropy was included in the models; rather,

anisotropy was provided imphcitly by the underlying grid used in the numerical calculations.

In this paper we present an asymptotic analysis in the sharp-interface limit of the model

studied by Kobayashi [17] and Wheeler et al. [19], including an anisotropic mobility. We

consider a two-dimensional phase-field description for the solidification of a single component

material of uniform density, and assume that there is no convection in the melt. We also

assume that the anisotropy is mild enough that the resulting interface shape is smooth. In

such an asymptotic analysis, the width of the transition region is thin compared to the radius

of curvature of the Hnes = constant. Similar asymptotic analyses have been performed for

the isotropic case [29, 30, 31, 32] to recover the boundary condition

- = Tm- ^-tK - T,
(
1 )

fi Lv

that relates the normal velocity of the interface Vn (considered to be positive for the formation

of sohd), the mean curvature of the interface, K

,

and the interface temperature, T/; here fi is

the interfacial kinetic coefficient, Ta/ is the bulk melting point, 7 is the (isotropic) interfacial

free energy, and Ly is the latent heat of fusion per unit volume. Our goal is to derive from

an appropriate phase-field model the corresponding anisotropic form of this equation [33],

which in two dimensions is

(
2

)

where 7 = 7 (
0
)
denotes the dependence of the surface free energy on the local interface

orientation, as measured by the angle 6 between the the interface normal and a given crys-
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tallographic direction, and fi = ii{9) is an anisotropic kinetic coefficient that also depends

on 9', here 'yee denotes the second derivative of the function 'y{9).

2 Isotropic Formulation

Of prime consideration will be the surface free energy, 7 ,
which is defined in terms of the

surface excess of the Helmholtz free energy of the system. In a phase-field model, the

bulk Helmoltz free energy density, /, includes dependence on the phase field, 9?, so that

f = /(T, (p), where T is the temperature. The free energy density of the solid is then f[T, 0)

and that of the liquid is /(T, 1 ), and at the bulk melting point, Tm, the two are equal.

The Helmholtz free energy functional that gives the free energy of an isothermal two-phase

system of volume V is assumed to have the form [34]

^ = l{fiT,'p)+^f\V<p\^'^dV, (3)

where the constant l-tiat appears in the gradient energy coefficient has units of energy per

unit length. If we adjust the bulk free energy so that /(TmjO) = /(3m, 1) = 0, then for a

one-dimensional system with (p = (p{x) the surface excess free energy per unit area is given

by
^

1 = J |/(^M, p) + dx. (4)

For an isothermal system, an evolution equation for the phase field is often postulated

by requiring that p evolve so as to minimize that is, by setting

(5)

where tq is an empirical relaxation coefficient, whose inverse is an intrinsic interfacial mobil-

ity.

For the non-isothermal case, it is more appropriate to start with an entropy functional

for the system [34, 35],

S =
(
6

)

in which the entropy density s depends on the internal energy density and the phase. The

parameter ( that appears in the entropy functional may be related to the parameter ^0 of tbe
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Helmholtz free energy functional by [34]- Evolution equations for the temperature

and the phase field may be derived by requiring that e and ip evolve so as to maximize S\

for example, phase-field equations of the form

de

dt
-V-

) (7)

(
8

)

can be derived in this manner [34]. Here Mt is proportional to the thermal conductivity,

and the internal energy density has the form

e(T, v) = es(T)^ p{v)L{T) = ez,(T) + \p{v>) - llL(r), (9)

where L{Tm) is the latent heat of fusion per unit volume and p{ip) is a smooth function

with p(0) = 0 and p(l) = 1, so that e(T, 1) — e(T, 0) = — es{T) — L{T). The energy

equation may then be rewritten in the form

c{T,v>)^ + L{T)p'{^)^ = V [kVT
]

,

(
10

)

where we have introduced

ciT,^) = [1 - ^ + P(¥>)^, (
11

)

which is an interpolation of the bulk heat capacities per unit volume, and the thermal

conductivity, k = the thermal conductivity may also be allowed to depend on

temperature and phase in a general formulation. The function Q{T) is given by the expression

[341

Q{T) = l
T i(C) _ L{Tm)

I’m C
d( =

Th
[T - Tm] + o(|r - TmY)

and the function G{tp) is taken to be a double-well potential of the form

GM = -
<P)^

(
12

)

(13)

where a is a constant that determines the height of the intermediate maximum in the double-

well potential; 1/a has dimensions of energy density per degree.
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In the special case that 5e(T,0)/5T = 5e(r, 1)/5T = cq and L{T) = Lq are constant,

and p{(p) = ip, Eqs. (7)-(8) become

+ ffe

(14)

(15)

which is essentially equivalent to the form used by Langer [1, 2] and Caginalp [4]. A dis-

advantage of the choice p{<p) = ip is that the roots of the expression Q[T)p'{ip) — G'{ip)

appearing in Eq.
(
8

)
that determine the values of ip in the bulk phases then depend on

temperature; choosing a more general form for p{ip) that satisfies p^(0
) = p'(l) = 0 allows

the roots ip = Q and 9?
— 1 for all temperatures [17, 34, 36, 37].

For the isothermal case with T = Tm, the system admits a steady one-dimensional

solution ip{x) given by
if r n? 11

(16)^tanh
X

1

[2\/2(^V^)J

where we have chosen the origin so that (/^(O) = 1/2. This solution shows that the width of

the interfacial layer is proportional to the product The surface free energy (4) for this

solution is given by

7 = T.e£
°°

2 .
TM{(y/a)

ip^dx =
6y/2a

(17)

Thus to maintain a finite surface free energy in the sharp-interface hmit that ( ^/a tends to

zero requires the constant a to tend to zero as well; i.e., the barrier height of the double-well

potential becomes large.

3 Anisotropic Formulation

To describe anisotropic surface free energies, we allow the coefficient ^ that appears in the

gradient energy term ^^|Vy?|^/2 to depend on the orientation 0 of the contours of constant

phase; i.e., we set ( = ^(0 )? where

0 = arctan((,cjy/(^a:) (18)

is the angle that the normal to these curves makes with the x-axis. The angle 0 is thus defined

throughout the domain; in the sharp-interface limit in which the crystal-melt interface is
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associated with the curve (p = 1/2, it reduces to the angle 9 that the interface normal makes

with a reference direction. The appropriate form for {(0) that is necessary to recover a given

anisotropic surface free energy 7(^) will be noted shortly. Practical difficulties in defining

0 that are associated with the fact that |V(^| tends to zero in the bulk regions far from the

interface are inconsequential to the asymptotic analysis, since the role of surface free energy

is significant only in the neighborhood of the interface where |V(/?| is non-negUgible.

The term in Eq. (8), which arises from the variation

if ^ is constant, is then replaced by a more complicated term

(19)

~ + additional terms.
8(p y

whose specific form we next compute.

The variation of the integral

(20)

is given by (here d^jdQ)

«/ = / dV

= J {-^VV • + ii'lfj'fiy - dV

= - / VV + 2«'V0 • + (Kf + a") [<^X0„ - ¥>v0x]} 6v> dV,

(
21

)

(22 )

where we have integrated by parts and discarded the boundary term because it does not

contribute to the functional derivative. In doing this, we have used the relation

^x8<Py - <PyS(p^

By using the expression

we obtain

6Q =

S/(p

|V(^| =

cos 0 X + sin 0 y.
|V¥>I

Vt&v - <fiy@x = |Vv5| V
vivv’iy

(23)

(24)

(25)
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and

V0.V^ = |VHz.Vx(^)i (26)

here x, y, and z are units vectors in the x, y, and z directions, respectively. The expression

(20) therefore has the form

- ^ (5[«0)f IVv^l^) = K(0)pvV + 2«0)a0)|Vv|z Vx

+ {\m)r + «0)r'(0)) iv^i v . (
2?)

An additional source of anisotropy is introduced by letting the empirical relaxation coeffi-

cient depend on orientation as well, so that t = t(0). The anisotropic form of the phase-field

equations (8) and (10) then becomes

c{T,v)^ + L{T)ip'{v)^ = V • [WT]

,

(0)g = QiT)p'iv) - G'M - ± (iK(0)l^|Vvp|

(28)

(29)

In the isothermal case with T = Tm, the equations admit steady, one-dimensional solu-

tions of the form ip = ip{x • fi), where n is a constant unit vector and x - n = s cos 6o + ysin Oq.

The orientation is then constant, with 0 = 6o, and the solution is given by [c.f. Eq. (16)]

"=2 tanh (.
X • n

+ 1

\2V2C{eo)y^

The surface free energy for this orientation is then given by

TM[({Go)\/a]

(30)

7(«o) =
6\/2a

(31)

This one- dimensional solution shows that interface width also varies with orientation; this

width can be characterized by the parameter

p{eo) = 6%/2[^(eo)\/a] (32)

which represents the width of the transition layer from (p « 0.05 to ~ 0.95. We note that

7 (^0 )
and t]{9o) are both proportional to ^(^o), i-e. they have the same anisotropy.
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3.1 Dimensionless Equations

It is convenient to work in dimensionless units. We choose a length scale I that represents

a geometrical length in the system, such as a typical radius of curvature of the macroscopic

phase boundaries. We choose a diffusive time scale C£,£^/A:£,, where ki, is the hquid thermal

conductivity and cl = deijdT is the heat capacity per unit volume of the liquid, both

evaluated at the melting point. We measure temperature relative to the melting point in

units of Tat, and measure energy density in units of L[Tm)-

Appropriate scalings for the width of the interfacial layer and the double-well barrier

height are incorporated by introducing the small dimensionless parameter e, defined by

o-L{Tm)
e =

Tm
(33)

where L[Tm) is the latent heat per unit volume at the melting point. A thin interfacial layer

is obtained by setting

= er(0). (34)

where r(0) is of order unity and is a dimensionless form of ^(0). The dimensionless governing

equations may then be written in the form

_du 1 - dip

^-37+ oip(v>)^ = ^
dt dt

kSJu (35)

e^f(0)^ = -¥’)(</^’-1/2) + e(5(u)y((,o)-e2A ^i[r(0)]2|Vyj|2^
, (36)

where the space and time variables are now dimensionless, and the variational deriva-

tive in the latter expression is given by Eq. (27) with r(0) replacing ^(0). Here u =

[T — Tm)/Tm is the dimensionless temperature, k{u,ip) = k{T,(p)lkL, c(u,(p) = c{T,(p)lcL,

Liu) = L{T)IL{Tm), and

Q{u) = jJo

Tmcl

L(TmY

” L(u)

S =

f(0) =

(l+u)2
du = u -\- O(u^).

(37)

(38)

(39)
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To retain the effects of interface kinetics, f(0) should be assumed to be of order unity. The

dimensionless Helmholtz free energy functional for T = Tm has the form

From Eqs. (31)-(34), we see that the dimensionless surface free energy for orientation 0 =

7(^0 ) m)
L{Tm)^ 6v^

4 Matched Asymptotic Expansions

An asymptotic expansion of the dimensionless phase-field equations (35)-(36) in the sharp

interface Hmit allows the identification of appropriate forms for the coefficients ^(0), t(0),

and a in order to recover the anisotropic generalization (2) of the Gibbs-Thomson equation.

The formal procedure is similar to that employed by Caginalp [29] for the isotropic case, so

we provide an abbreviated version of the asymptotic expansion. To perform the expansion,

two subregions of the domain are identified: in the inner region, which represents the vicinity

of the interfacial layer, the gradient of the phase field is large and the temperature varies

slowly, and in the outer region, which represents the bulk phases, the phase field is essentially

constant. In each phase, the solution can be represented by an asymptotic expansion in terms

of appropriately-scaled inner or outer variables. The inner and outer regions share a common

region of overlap, and in this intermediate region, the asymptotic expansions for the inner

and outer solutions can be matched to determined the solution. Roughly speaking, the outer

solution determines the far-held boundary conditions for the inner solution, and the inner

solution determines the appropriate interfacial jump conditions for the outer solution.

4.1 Outer Solution

The outer solution is dehned in the bulk phases where the spatial variation of is small,

and this variation is on an 0(1) length scale. The solution is formally expanded in powers

of e,

u = -f -f e . .
.

,

(42)

10



(1) -L .2,. (2)
(43)

The leading order solution is given by = 1 and = 0 in the liquid and solid regions,

respectively, and the leading order temperature in each region satisfies the usual diffusion

equation

:(o)

~Tr
= V • (

0
) (44)

where and A:f°l have values appropriate to the respective bulk phases.

Far-held boundary conditions for the thermal held are assumed to be known, but interfa-

cial jump conditions, that hold in the limit that the interfacial layer becomes sharp, must be

determined by matching with the inner solution. The higher-order corrections for thermal

held may be computed by continuing the procedure, but are not required for the subsequent

analysis. From Eq. (36) we see that the hrst-order correction for the phase held vanishes

identically under the assumption that p^(0) = P^(l) == 0. The formal expansion for the outer

solution breaks down near the interfacial layer, where the variation of (/? is large.

4.2 Inner Solution

To perform the inner expansion in the interfacial layer, it is convenient to introduce a local

coordinate system based on a parametrization of the curve (p[xjy,t) = 1/2. In terms of

the arclength s, this curve may be expressed in the form x = X{s,t) and y = Y[s,t).

The curve has a tangent vector {X',Y'), a normal vector {Y'

^

—X'), and a normal velocity

Vn = Y'Xt — X'Yt, where the prime denotes the derivative with respect to arclength and

time derivatives are indicated by subscripts. We use s as one of the local coordinates, and

use the distance r along the normal as the other coordinate, so that

x{r,s,t) = X{s,t) rY\s,t), (45)

y{r,s,t) = Y{s,t) -rX'{s,t). (46)

The orientation of the curve is chosen so that the soHd lies on the left if the curve is traversed

in the direction of increasing s, and the normal then points into the liquid; the coordinate

system is described in more detail in the Appendix. The governing equations in the local
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coordinates are further transformed by introducing the scaled variable p = rje and writ-

ing ip{p,s,t) = (p{x,y,t) and u{p,s,t) = u{x,y,t) in the inner region, with corresponding

expansions

u = + • • •

,

(p
= -f 4- + . .

.

(47)

(48)

in terms of the inner variables.

4.2.1 Matching Conditions

Matching conditions provide the far-held boundary conditions for the inner solution. The

outer solution u[x,y,t) at a point near the curve (/? = 1/2 is written as a function of the

inner variables, and the resulting expressions are expanded in e to obtain

n(X + epY',Y- epX\t) = u^i\x,Y,t) +
£
|4''(X,r,4) + p^(X,Y,t)\ + 0(^), (49)

where the plus or minus subscript indicates the limiting behavior of the outer solution as p

tends to zero through positive or negative values, respectively, to allow for the possibility

of discontinuous behavior of the outer solution in the sharp- interface limit. The limiting

behavior of the phase held is simply y? = 1 -f- O(e^) for p > 0 and (,0 = (9(e^) for p < 0.

4.2.2 Transformation to Inner Variables

The orientation angle 0, which in the inner region satishes

, nr ^ -{X'^epY")^,^eY'Cp,
tan0(p,s,y?p,(^,) = ——

{Y' - epX")(pp -\- eX'ifg

can be expanded in the form

with

0 = 0(0) + e0(i) + o{^).

tan0(°) = -X'jY' - tan0(s).

(50)

(51)

(52)

12



i.e., to leading order, 0^°) is simply the normal angle 0(s) to the interface, and is independent

of the variable p. A short calculation shows that the first order correction is given by

0(1) = ^(0)/^(0). (53)

we note that s) vanishes when p = 0, but is not necessarily zero if p ^ 0.

The governing equations may be transformed by using the results given in the Appendix;

here we note some of the intermediate expressions before presenting the final results. The

time derivative transforms according to

dip —Vri dip^^^

dt e dp

The transformed Laplacian assumes the form

1

+ 0(1). (54)

vv =
(1 + cpK)

[(1 + C/)A')y?r]r +

K(s)

(1 + epK)

= i(^W + e,?W) + :^^(0) + o(i),

and the gradient is given by

|V<^| = + + 0(e);

(55)

(56)

here we assume that the coordinates are oriented so that > 0 when simphfying the

square root.

We also have the expansions

1— <

1 (1 + epK)<pp
+ e

p

ipj{l + epK)
>

>

(1 + epK) e + eV^/(l + epX)2_
3 >

- K{s) + 0{e), (57)

and

z • V X
/V^\ _ 1 1

'

1 ^p

>

(l + e/pif) e + eVa/Cl +
p

+ eV^/(l + epir)2_
a >

+ 0(e). (58)

13



We therefore have

ir(e)l^<?JS> + €
{[r(0)]^<?w + [r(0 )i^A'(5 )v('’) + 2r(0)r'(0)

X (3 (
0

) _ ^PP

(3(0)
<Pp

+ ([r(0)f + r(0)r"(0)) + o(e^)

+ ([r'(e )]2 + r(e)r"(e))
}
+ o{e% (59)

where in the final expression we have expanded F = r(0
)
using

0 9{s) + + O(e^).

to simplify the result.

(60)

4.2.3 Leading-Order Solution

The leading-order equations take the form

[r(«)]^^ - = 0,
dp^

where

1

5(^(0)) = - 1)(<^») - 1/2).

(61)

(62)

(63)

Here denotes the thermal conductivity evaluated with the leading order

solution.

The thermal matching conditions for the inner problem,

u>-'>\p,s,t)-*u<i\X,Y,t) (64)

as p —> ±00 implies that jdp = 0, and so is independent of p. It follows that

the leading order thermal field for the outer solution is continuous across the interface.

The leading order solution for the phase field is [cf. Eq. (16)]

^(%,.) = i{tanh(j^)+l); (65)

here the 5-dependence of enters through the function F, whose argument is the normal

angle 9(s) along the interface.

14



4.2.4 First-Order Solution

The first-order inner problem has the form

(66 )

- 2r(e)r'(ff).?<,°> - (|r'(«)]^ + r(«)r"(fl)) (67)

The thermal matching conditions for the inner problem imply that

as p —> ±oo. Integration of the thermal equation then gives the equation

(
68

)

- V,
I

— — = f^L—^ «5‘
dn dn

(69)

which is the appropriate heat flux boundary condition for the outer solution.

Differentiation of Eq. (62) with respect to p shows that the function is a homogeneous

solution of Eq. (67). The right hand side of this equation must be then be orthogonal to this

function, which provides the solvability condition

/
OO /•OO

(<?(»))^ dp = -Qiu^o)) - [r(«)]^A'(s)
/

dp
-OO j — OO

f] r roo *] / . TOO

- r(fi)r'(9)- dp\ - ([r'(e)]^ + r(9)r"(«)) k(s) dp, (70)

or, using the relation

’) dp -
gy2r(e)’

(71)

we have ^ = -W<»>)-^ir(-i) + rw]x(.), (72)

which is our principal result.
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5 Discussion

The expression (72) is the dimensionless version of Eq. (2) if we take Q{u) « u and revert

to dimensional variables,

Tm

^{6)

= Tm —
L{Tm)

(7 + lee)K — Ti\

here we have identified

^l(e)
_ (&s/2L(Tm)\ m-Ji

\
rp2
-‘-M j r{»)

(73)

(74)

as the appropriate form for the kinetic coefficient, and we recall that the surface free energy

is given by

7(0) -
6\/2a

(75)

Note that anisotropy in the parameter ((6) induces anisotropy in both the surface free

energy and the kinetic coefficient, even when the parameter r is isotropic; note also that the

anisotropy of the kinetic coefficient depends on the ratio of ( and r.

The expressions (74), (75), and (32) relate the physical parameters /x, 7, and the interface

width 7) to the phase-field parameters r, and a. These relations can be inverted to yield

expressions for the phase-field parameters in terms of the physical parameters, viz.

L(T„),(0)

W) ’ (76)

J-M
(77)

Tm7(0)
"" "

727(0)
’ (78)

note that the latter expression impfies a common functional dependence for rj and 7 in order

for the resulting parameter a to be constant. Alternatively, the parameters r and ^ may be

expressed in terms of 7, fi, and the single parameter a by using Eq. (78) to eliminate rj in

equations (76) and (77).

As mentioned in the introduction, an anisotropic surface free energy can also be obtained

by replacing the isotropic gradient energy term by the more general quadratic form -|-

^yiPy)/2 [23], where and (y are constants. In this case, the term in Eq. (8) would
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be replaced by

-^ ff + I (79)

If X is scaled by (x a-nd V is scaled by (y, this expression reduces to that for the isotropic case.

Since the isotropic equihbrium shape is given by a circle, the corresponding anisotropic equi-

librium shape is therefore an elhpse. This choice of gradient energy leads to one-dimensional

solutions of the form (30) with surface free energy (31), where

^{do) = yjil C0S2 do + ^2 siji2

This particular form of gradient energy term thus leads to a surface free energy with two-fold

axes of symmetry about the orientations 0 = 0 and 6 = 7r/2, and possessing only two degrees

of freedom (^^ and ^y). The present approach for introducing anisotropy, wherein a scalar

function ( = ^( 0 )
is instead employed, allows general surface energies 7 = 7 (

0
)
to be treated.
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Appendix

We collect some pertinent facts about the local coordinate system used in the inner expansion

of the matching procedure. The orthogonal coordinates r and s are defined relative to the

moving curve x = Ar( 5 ,i) and y = Y(s,t), where s is arclength along the curve. The

coordinate transformation is given by

x(r,5,t) = X{s,t)^rY'{s,t) (81)

y{r,s,t) = Y[s,t) — rX'{s,t). (82)
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Thus

X. (83)

(84)

Xr = Y’{s,t),

X, = X'(s,t) + rY"{s,t),

Vt = -X'{s,t),

y. = Y'{s,t)~rX"(s,t).

If the angle that the normal to the interface makes with respect to the x-axis is denoted by

^( 5 ), then 6g = /C(s) is the local curvature of the interface. We have

X‘ + iV = (85)

and by differentiating we have

X" + iY" = -e^^K.

It follows that

and

K = -{X" - iY")e^^ = X'Y" - Y'X",

{X"f + {Y''f = K\

For the unit circle, this expression gives a positive curvature K = 1.

We have the Jacobian

(
86

)

(87)

(
88

)

h{r,s) = XrV, - x.yr = 1 +rK{s). (89)

Since XrXg + = 0, the coordinates are orthogonal, and the square of the element of

differential arclength dS in the three-dimensional set of orthogonal coordinates {r,s,z) is

given by

dS^ = dr^ h?ds^ -|- dz^

.

(90)

The gradient of a function transforms according to

VV? = V’r? + 7V’5S, (91)
h

and the Laplacian is given by

VV = i{(AW. + (iV'.)j. (92)

Given a vector

A(r, 5
)
== u(r, 5 )? -f t;(r, 5)s, (93)
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we have

(94)V A = i{(/iu)r + t),},

tl

and

z • V X A = T{i^'^)r
— (95)

h

(These relations are analogous to those in cylindrical coordinates, if h[r, s) is identified with

the radius in the corresponding expressions.)

If we regard the coordinates r and s as functions of x, y, and t, we note that inverting

the Jacobian matrix gives the relations

hr^ = Y'{s) - rX"{s), hr, = -X‘{s)-rY''{s), (96)

hs, = X'{s), h,y = r(s). (97)

We also have

hrt = -{XtY' - YtX') + r{XtX" + YY")

+ r^{Y;X" - X^Y") = -Vn + 0(r), (98)

hst = -{XtX' + YtY') + t{Y'X[ - XX)

= —ntan + 0{r), (99)

where Vn = Y'Xt — X'Yt is the normal velocity of the curve and Utan = Y'Yt + X'Xt is a

tangential velocity which depends on the specific choice of arclength parametrization.

References

[1] J. S. Langer, private communication, August, 1978.

[2] J. S. Langer, in Directions in Condensed Matter Physics^ edited by G. Grinstein and G.

Mazenko, (World Scientific, Philadelphia, 1986) p. 165.

[3] B. I. Halpern, P. C. Hohenberg and S-K. Ma, Phys. Rev. B 10, 139 (1974).

[4] G. Caginalp, in Applications of Field Theory to Statistical Mechanics, edited by L.

Garrido, Lecture Notes in Physics No. 216 ( Springer-Verlag, BerUn, 1985) p. 216.

19



[5] J. B. Collins and H. Levine, Phys Rev. B 31, 6119 (1985).

[6] A. R. Umantsev and A L. Roitburd, Sov. Phys. Solid State 30, 651 (1988); A. Umantsev

and G. B. Olson, Phys. Rev. A 46, R6132 (1992).

[7] J. W. Gibbs, On the equilibrium of heterogeneous substances, in The Collected Works

of J. Williard Gibbs, Vol I (Longmans, Green and Co., New York, 1928) 55-353.

[8] J. D. Van der Waals, The thermodynamic theory of capillarity under the hypothesis

of a continuous variation of density (translation of Dutch title): Konink. Akad, Weten.

Amsterdam, (section 1) Vol. 1, No. 8 (1893), English translation: (with commentary)

J. S. Rowhnson, J. Stat. Phys. 20 (1979) 197-244.

[9] J. W. Cahn and S. M. Allen, J. de Physique, CoUoque C7 (Supp.), C7-51 (1977).

[10] S. M. Allen and J. W. Cahn, Acta Metall. 27, 1085 (1979).

[11] J. W. Cahn and J. E. Hilhard, J. Chem. Phys. 28, 258 (1958).

[12] J. W. Cahn, Acta MetaU. 9, 795 (1961).

[13] M. E. Rose, Math. Comp. 14, 249 (1960).

[14] A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, A phase-field model of solute

trapping during solidification, to appear in Phys. Rev. E, 1993.

[15] R. Kobayashi, Bull. Jpn. Soc. Ind. Appl. Math. 1, 22 (1991).

[16] R. Kobayashi, Computing Optimal Geometries, Proceedings of an AMS Special Session,

edited by Jean Taylor, videotapes (1991).

[17] R. Kobayashi, Modehng and Numerical Simulations of Dendritic Crystal Growth, to

appear in Physica D (1992).

[18] R. Kobayashi, Simulations of Three Dimensional Dendrites, preprint and associated

video tape.

20



[19] A. A. Wheeler, B. T. Murray, and R. J. Schaefer, Computation of Dendrites Using a

Phase-Field Model, to appear in Physica D (1993).

[20] M. E. Glicksman, Mat. Sci. Eng. 65, 45 (1984).

[21] J. S. Langer, Lectures in the theory of pattern formation, in Le Hesard et la Matiere/

Chance and Matter^ Les Houches, Session XLVI (North-HoUand, Amsterdam, 1987)

Course 10, p. 629.

[22] G. Caginalp and P. Fife, Phys. Rev. B 34, 4940 (1986).

[23] G. Caginalp, Ann. Phys. 172, 136 (1986).

[24] J. W. Cahn and R. Kikuchi, Phys. Rev. B 31, 4300 (1985).

[25] P. R. Harrowell and D. W. Oxtoby, J. Chem. Phys. 86, 2932 (1987).

[26] J. E. Hilhard, Spinodal Decomposition, in Phase Transformations, (Amer. Soc. Metals,

Metals Park, Ohio, 1970) 497-560.

[27] J. B. Smith, J. Comput. Phys. 39, 112 (1981).

[28] A. R. Umantsev, V. V. Vinograd, and V. T. Borisov, Sov. Phys. Crystallogr. 30, 262

(1986); A. R. Umantsev, V. V. Vinograd, and V. T. Borisov, Sov. Phys. CrystaUogr.

31, 596 (1986).

[29] G. Caginalp, Phys. Rev. A 39, 5887 (1989).

[30] P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces, CBMS-NSF Regional

Conference Series in Applied Mathematics, Vol. 53 (SIAM, Philadelphia, 1988) pp. 11-

15.

[31] R. Pego, Proc. Roy. Soc. Lond. A 422, 261 (1989).

[32] J. Rubenstein, P. Sternberg, and J. B. Keller, SIAM J. Appl. Math. 49, 116 (1989).

[33] C. Herring, in Structure and Properties of Solid Surfaces, edited by R. Gomer and C.

S. Smith, (University of Chicago Press, Chicago, 1952).

21



[34] S-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J. Braun, and

G. B. McFadden, Thermodynamically- consistent phase-field models for solidification,

submitted to Physica D, 1992.

[35] 0. Penrose and P. C. Fife, Physica D 43, 44 (1990).

[36] G. Caginalp and X. Chen, in On the Evolution of Phase Boundaries, The IMA Series

in Mathematics and Its Applications, Vol. 43, M. E. Gurtin and G. B. McFadden, eds.,

( Springer-Verlag, New York, 1992), pp. 1-27.

[37] A. Umantsev, J. Chem. Phys. 96, 605 (1992)

22






