Skip to main content
Log in

Explicit diagonalization of pair interaction models

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide a general method for constructing bosonic Bogoliubov transformations that diagonalize a general class of quadratic Hamiltonians. These Hamiltonians describe the pair interaction models. Bogoliubov transformations are constructed algebraically, and the resulting Hamiltonians become the second quantizations of explicit one-particle Hamiltonians. Moreover, an explicit formula for the ground state energies is given. Our method systematically diagonalizes various models of quantum field theory, including a model of a harmonic oscillator coupled to a Bose field and the Pauli-Fierz models in the dipole approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data were used to support this study.

References

  1. Arai, A.: On a model of a harmonic oscillator coupled to a quantized, massless, scalar field. I. J. Math. Phys. 22, 2539–2548 (1981)

    Article  MathSciNet  Google Scholar 

  2. Arai, A.: Rigorous theory of spectra and radiation for a model in quantum electrodynamics. J. Math. Phys. 24, 1896–1910 (1983)

    Article  MathSciNet  Google Scholar 

  3. Arai, A.: A note on scattering theory in non-relativistic quantum electrodynamics. J. Phys. A: Math. Gen. 16, 49–70 (1983)

    Article  Google Scholar 

  4. Arai, A.: Fock spaces and Quantum fields (in Japanese). Nippon-hyoronsha, Tokyo (2000)

    Google Scholar 

  5. Arai, A.: Analysis on Fock spaces and Mathematical theory of quantum fields. World Scientific, London (2018)

    Book  Google Scholar 

  6. Asahara, K., Funakawa, D.: Spectral analysis of an abstract pair interaction model, to appear in. Hokkaido Math. J., arXiv:1807.08408v1

  7. Berezin, E.A.: The Method of Second Quantization. Academic Press, Cambridge (1966)

    MATH  Google Scholar 

  8. Dereziński, J.: Van Hove Hamiltonians - exactly solvable models of the infrared and ultraviolet problem. Ann. Henri Poincare 4, 713–738 (2003)

    Article  MathSciNet  Google Scholar 

  9. Dereziński, J.: Bosonic quadratic Hamiltonians. J. Math. Phys. 58, 121101 (2017)

    Article  MathSciNet  Google Scholar 

  10. Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  11. Hiroshima, F., Sasaki, I., Spohn, H., Suzuki, A.: Enhanced Binding in Quantum Field Theory, COE Lecture Note Vol. 38, IMI, Kyushu University, (2012)

  12. Grech, P., Seiringer, R.: The Excitation Spectrum for Weakly Interacting Bosons in a Trap. Comm. Math. Phys. 322, 559–591 (2013)

    Article  MathSciNet  Google Scholar 

  13. Klein, A., McCormick, B.H.: Meson Pair Theory. Phys. Rev. 98, 1428–1445 (1955)

    Article  MathSciNet  Google Scholar 

  14. Miyao, T., Sasaki, I.: Stability of discrete ground state. Hokkaido Math. J. 34, 689–717 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Nam, P.T., Napiórkowskia, M., Solovej, J.P.: Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations. J. Funct. Anal. 270, 4340–4368 (2016)

    Article  MathSciNet  Google Scholar 

  16. Ruijsenaars, S.N.M.: On Bogoliubov Transformations. II. The General Case. Ann. Phys. 116, 105–134 (1978)

    Article  MathSciNet  Google Scholar 

  17. Schmüdgen, K.: Unbounded self-adjoint operators on Hilbert space. volume 265 of Graduate Texts in Mathematics, Springer, (2012)

  18. Simon, B.: A Comprehensive Course in Analysis, Part 4: Operator Theory. American Mathematical Society, Providence, RI (2015)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Shinnosuke Izumi for pointing out several missprints. This work was supported by JSPS KAKENHI (Grant Number JP16K17612 and JP20K03628).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itaru Sasaki.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Inequalities on creation-annihilation operators and second quantizations

Let \((M,\mu )\) be a measure space. Suppose that \(L^2(M):=L^2(M,d\mu )\) is separable. The space \(\mathop {\otimes }_{{\mathrm {s}}}^nL^2(M)\) can be identified with the set of square integrable symmetric functions.

$$\begin{aligned} L^2_{{\mathrm {sym}}}(M^n) := \big \{\Psi \in L^2(M^n) ~\big |~ \Psi (k_1,\cdots ,k_n)=\Psi (k_{\sigma (1)},\cdots ,k_{\sigma (n)}), \sigma \in S_n\big \}. \end{aligned}$$

Let us consider the Cartesian product space

$$\begin{aligned} {\mathscr {F}}^{\mathsf {x}} := \mathop {{\mathsf {X}}}_{n=0}^\infty L^2_{{\mathrm {sym}}}(M^n), \end{aligned}$$

where \({\mathbb {C}}:=L^2_{{\mathrm {sym}}}(M^0)\). Then the Fock space \({\mathscr {F}}_{{\mathrm {b}}}(L^2(M))\) can be identified with a subset of \({\mathscr {F}}^{\mathsf {x}}\). For \(\Psi =(\Psi ^{(n)})_{n=0}^\infty \in {\mathscr {F}}^{\mathsf {x}}\), we define an informal norm by

$$\begin{aligned} \Vert \Psi \Vert ^2 := \sum _{n=0}^\infty \Vert \Psi ^{(n)} \Vert _{L^2(M^n)}^2 \in [0,+\infty ]. \end{aligned}$$

An inner product of \(\Psi ,\Phi \in {\mathscr {F}}^{\mathsf {x}}\) is defined by

$$\begin{aligned} \left\langle \Psi ,\Phi \right\rangle := \sum _{n=0}^\infty \left\langle \Psi ^{(n)},\Phi ^{(n)}\right\rangle \end{aligned}$$

if the sum converges. For \(\Psi = (\Psi ^{(n)})_{n=0}^\infty \in {\mathscr {F}}^{\mathsf {x}}\) and \(k\in M\), we define \(A(k)\Psi \in {\mathscr {F}}^{\mathsf {x}}\) by

$$\begin{aligned} (A(k)\Psi )^{(n)}(\cdot ) := \sqrt{n+1}\Psi ^{(n+1)}(k,\cdot ) \in L^2_{{\mathrm {sym}}}(M^n), \qquad n=0,1,2,\cdots . \end{aligned}$$
(A.1)

Note that \(A(k)\Psi \) is defined for \(\mu \)-a.e. \(k\in M\). For finite particle state \(\Phi \in {\mathscr {F}}_{{\mathrm {b}}0}\), \(\left\langle \Phi ,A(k)\Psi \right\rangle \) consists of finite sum and

$$\begin{aligned} \left\langle \Phi ,A(f)\Psi \right\rangle = \int _Md\mu (k)\,\overline{f(k)}\left\langle \Phi ,A(k)\Psi \right\rangle , \qquad \Psi \in \mathop {{\mathrm {dom}}}(A(f)) \end{aligned}$$

holds.

Lemma A.1

Let \(Q(k)>0\) be a measurable function. The multiplication operator by Q(k) acting in \(L^2(M)\) is also denoted by Q. Then, for all \(\Psi \in {\mathscr {F}}^{\mathsf {x}}\), \(\Psi \in \mathop {{\mathrm {dom}}}({\mathrm {d}}\Gamma _{\mathrm{b}}(Q)^{1/2})\) if and only if

$$\begin{aligned} \int _M Q(k)\Vert A(k)\Psi \Vert ^2 \,d\mu (k) < \infty . \end{aligned}$$

In this case, the equality

$$\begin{aligned} \Vert {\mathrm {d}}\Gamma _{\mathrm{b}}(Q)^{1/2}\Psi \Vert ^2 = \int _M Q(k)\Vert A(k)\Psi \Vert ^2 \,d\mu (k) \end{aligned}$$

holds. Moreover, if \(f\in \mathop {{\mathrm {dom}}}(Q^{-1/2})\), \(\Psi \in \mathop {{\mathrm {dom}}}(A(f))\) and

$$\begin{aligned} \left\langle \Phi ,A(f)\Psi \right\rangle = \int _M \overline{f(k)}\left\langle \Phi ,A(k)\Psi \right\rangle \,d\mu (k) \end{aligned}$$

hold for \(\Psi \in \mathop {{\mathrm {dom}}}({\mathrm {d}}\Gamma _{\mathrm{b}}(Q)^{1/2})\) and \(\Phi \in {\mathscr {F}}_{{\mathrm {b}}}(L^2(M))\).

Proof

The lemma directly follows from the definitions of second quantization operator and A(k). \(\square \)

Lemma A.2

Let T be an injective non-negative self-adjoint operator acting in a separable Hilbert space and \(f_1,\cdots ,f_n\in \mathop {{\mathrm {dom}}}(T^{-1/2})\). Then

$$\begin{aligned} \mathop {{\mathrm {dom}}}({\mathrm {d}}\Gamma _{\mathrm{b}}(T)^{n/2})\subset \mathop {{\mathrm {dom}}}(A(f_1)\cdots A(f_n)), \end{aligned}$$

and the bound

$$\begin{aligned} \Vert A(f_1)\cdots A(f_n)\Psi \Vert \le \Vert T^{-1/2}f_1 \Vert \cdots \Vert T^{-1/2}f_n \Vert \cdot \Vert {\mathrm {d}}\Gamma _{\mathrm{b}}(T)^{n/2}\Psi \Vert \end{aligned}$$
(A.2)

holds for \(\Psi \in \mathop {{\mathrm {dom}}}({\mathrm {d}}\Gamma _{\mathrm{b}}(T)^{n/2})\). In the case of \(n=2\), the bound

$$\begin{aligned} \Vert A(f_1) A(f_2)\Psi \Vert \le \Vert T^{-1/2}f_1 \Vert \cdot \Vert T^{-1/2}f_2 \Vert \big ( \Vert {\mathrm {d}}\Gamma _{\mathrm{b}}(T)\Psi \Vert ^2 - \Vert {\mathrm {d}}\Gamma _{\mathrm{b}}(T^2)^{1/2}\Psi \Vert ^2 \big )^{1/2} \end{aligned}$$
(A.3)

holds.

Proof

Since any self-adjoint operator T is unitarily equivalent to a multiplication operator on an \(L^2\)-space, it is enough to prove the lemma in the case of \({\mathscr {H}}=L^2(M)\), \(T=Q\). By Lemma A.1, for \(\Psi \in \mathop {{\mathrm {dom}}}({\mathrm {d}}\Gamma _{\mathrm{b}}(T)^{n/2})\) and \(\Phi \in {\mathscr {F}}_{{\mathrm {b}}0}\), we have

$$\begin{aligned} \left\langle A^*(f_1)\cdots A^*(f_n)\Phi ,\Psi \right\rangle&= \int _{M^n} \overline{f_1(k_1)}\cdots \overline{f_n(k_n)} \left\langle \Phi ,A(k_1)\cdots A(k_n)\Psi \right\rangle \,d\mu (k_1)\cdots d\mu (k_n). \end{aligned}$$

We set \(\Vert \Phi \Vert =1\), \(f_j:=f_j(k_j)\), \(Q_j^{1/2}:=Q(k_j)^{1/2}\) and \(d\mu :=d\mu (k_1)\cdots d\mu (k_n)\). Then we have

$$\begin{aligned}&|\left\langle A^*(f_1)\cdots A^*(f_n)\Phi ,\Psi \right\rangle | \\&\quad \le \int _{M^n} |f_1 \cdots f_n| \cdot \Vert A(k_1)\cdots A(k_n)\Psi \Vert \,d\mu \\&\quad \le \bigg ( \int _{M^n} \prod _{j=1}^n |Q_j^{-1/2}f_j|^2\,d\mu \bigg )^{1/2} \bigg ( \int _{M^n} Q_1\cdots Q_n \Vert A(k_1)\cdots A(k_n)\Psi \Vert ^2\,d\mu \bigg )^{1/2} \\&\quad \le \Vert Q^{-1/2}f_1 \Vert \cdots \Vert Q^{-1/2}f_n \Vert \bigg ( \int _{M^n} Q_1\cdots Q_n \Vert A(k_1)\cdots A(k_n)\Psi \Vert ^2\,d\mu \bigg )^{1/2}. \end{aligned}$$

By the definition of A(k), one has

$$\begin{aligned}&\Vert A(k_1)\cdots A(k_n)\Psi \Vert ^2 \\&\quad = \sum _{N=0}^\infty (N+1)\Vert (A(k_2)\cdots A(k_n)\Psi )^{(N+1)}(k_1,\cdot ) \Vert ^2 \\&\quad = \sum _{N=0}^\infty (N+1)(N+2)\Vert (A(k_3)\cdots A(k_n)\Psi )^{(N+2)}(k_1,k_2,\cdot ) \Vert ^2 \\&\quad = \sum _{N=0}^\infty (N+1)\cdots (N+n) \Vert \Psi ^{(N+n)}(k_1,\cdots ,k_n,\cdot ) \Vert ^2 \\&\quad = \sum _{N=0}^\infty (N+1)\cdots (N+n) \int _{M^N} d\mu (k_{n+1})\cdots d\mu (k_{n+N})\,|\Psi ^{(N+n)}(k_1,\cdots ,k_{N+n})|^2. \end{aligned}$$

Therefore, we have

$$\begin{aligned}&\int _{M^n} Q_1\cdots Q_n \Vert A(k_1)\cdots A(k_n)\Psi \Vert ^2\,d\mu \nonumber \\&\quad = \sum _{N=0}^\infty \int _{M^{N+n}} d\mu (k_1)\cdots d\mu (k_{n+N})\,\frac{(N+n)!}{N!} Q_1\cdots Q_n| \Psi ^{(N+n)}(k_1,\cdots ,k_{N+n})|^2 \nonumber \\&\quad = \sum _{N=n}^\infty \int _{M^N} d\mu (k_1)\cdots d\mu (k_N)\,\frac{N!}{(N-n)!} Q_1\cdots Q_n| \Psi ^{(N)}(k_1,\cdots ,k_N)|^2 \nonumber \\&\quad = \sum _{N=n}^\infty \int _{M^N} d\mu (k_1)\cdots d\mu (k_N) \mathop {\sum _{j_1,\cdots ,j_n=1}^N}_{\sharp \{j_1,\cdots ,j_n\}=n} Q_{j_1}\cdots Q_{j_n}| \Psi ^{(N)}(k_1,\cdots ,k_N)|^2, \end{aligned}$$
(A.4)

where, in the last step, we used the symmetry of \(\Psi ^{(N)}\). In the case \(n=2\), we have

$$\begin{aligned} (A.4)&= \sum _{N=2}^\infty \int _{M^N} d\mu (k_1)\cdots d\mu (k_N)\,\left\{ \left( \sum _{j=1}^N Q_j \right) ^2 -\sum _{j=1}^N Q_j^2 \right\} |\Psi ^{(N)}(k_1,\cdots ,k_N)|^2 \nonumber \\&= \Vert {\mathrm {d}}\Gamma _{\mathrm{b}}(Q)\Psi \Vert ^2 - \Vert {\mathrm {d}}\Gamma _{\mathrm{b}}(Q^2)^{1/2}\Psi \Vert ^2, \end{aligned}$$
(A.5)

and, for \(n\ge 2\), we have

$$\begin{aligned} (A.4)&\le \sum _{N=n}^\infty \int _{M^N} d\mu (k_1)\cdots d\mu (k_N)\,\Big ( \sum _{j=1}^N Q(k_j)\Big )^n | \Psi ^{(N)}(k_1,\cdots ,k_N)|^2 \\&\le \Vert {\mathrm {d}}\Gamma _{\mathrm{b}}(Q)^{n/2}\Psi \Vert ^2 < \infty . \end{aligned}$$

Hence, for all \(\Phi \in {\mathscr {F}}_{{\mathrm {b}}0}\) and \(\Psi \in \mathop {{\mathrm {dom}}}({\mathrm {d}}\Gamma _{\mathrm{b}}(Q)^{n/2})\), it holds that

$$\begin{aligned} |\left\langle A^*(f_1)\cdots A^*(f_j)\Phi ,\Psi \right\rangle | \le \prod _{\ell =1}^j \Vert Q^{-1/2}f_\ell \Vert \cdot \Vert \Phi \Vert \cdot \Vert {\mathrm {d}}\Gamma _{\mathrm{b}}(Q)^{j/2}\Psi \Vert ,\qquad j=1,2,\cdots ,n. \end{aligned}$$

Since \({\mathscr {F}}_{{\mathrm {b}}0}\) is a core for A(f), by setting \(j=1\) in the above inequality, we have \(\Psi \in \mathop {{\mathrm {dom}}}(A(f_1))\). Next, by setting \(j=2\), one has \(A(f_1)\Psi \in \mathop {{\mathrm {dom}}}(A(f_2))\). Therefore \(\Psi \in \mathop {{\mathrm {dom}}}(A(f_n)\cdots A(f_1))\) follows by induction. We also have the bound

$$\begin{aligned} \Vert A(f_n)\cdots A(f_1)\Psi \Vert&= \mathop {\sup _{\Phi \in {\mathscr {F}}_{{\mathrm {b}}0}}}_{{\Vert \Phi \Vert =1}} |\left\langle A^*(f_1)\cdots A^*(f_n)\Phi ,\Psi \right\rangle | \\&\le \prod _{\ell =1}^n \Vert Q^{-1/2}f_\ell \Vert \cdot \Vert {\mathrm {d}}\Gamma _{\mathrm{b}}(Q)^{n/2}\Psi \Vert . \end{aligned}$$

Thus we get (A.2). The bound (A.3) follows from (A.5). \(\square \)

Lemma A.3

Let T be an injective non-negative self-adjoint operator and \(g\in \mathop {{\mathrm {dom}}}(T^{-1/2})\). Then \(\mathop {{\mathrm {dom}}}({\mathrm {d}}\Gamma _{\mathrm{b}}(T))\subset \mathop {{\mathrm {dom}}}(\Phi _{{\mathrm {S}}}(g)^2)\) and for all \(\Psi \in \mathop {{\mathrm {dom}}}({\mathrm {d}}\Gamma _{\mathrm{b}}(T))\),

$$\begin{aligned} \frac{1}{2} \Vert \Phi _{{\mathrm {S}}}(g)^2\Psi \Vert \le \Vert T^{-1/2}g \Vert ^2 \Vert {\mathrm {d}}\Gamma _{\mathrm{b}}(T)\Psi \Vert + \Vert g \Vert ^2\Vert \Psi \Vert \end{aligned}$$
(A.6)

holds.

Proof

In this proof, we write

$$\begin{aligned} a:=A(g), ~~ a^*:=A^*(g), ~~ c:=\Vert g \Vert ^2, ~~ d:=\Vert T^{-1/2}g \Vert ^2, ~~ H_0 := {\mathrm {d}}\Gamma _{\mathrm{b}}(T) \end{aligned}$$

for short. We first assume \(\Psi \in {\mathscr {F}}_{\mathrm {b,fin}}(\mathop {{\mathrm {dom}}}(T))\). By the triangle inequality,

$$\begin{aligned} \Vert \Phi _{{\mathrm {S}}}(g)^2\Psi \Vert ^2&= \frac{1}{4} \Vert (a^2 + a^*a + aa^* + a^{*2})\Psi \Vert ^2 \\&\le \Vert a^2\Psi \Vert ^2 + \Vert a^*a\Psi \Vert ^2 + \Vert aa^*\Psi \Vert ^2 + \Vert a^{*2}\Psi \Vert ^2. \end{aligned}$$

By the CCRs and Lemma A.2, we have

$$\begin{aligned} \Vert a^2\Psi \Vert ^2&\le d^2 \Vert H_0\Psi \Vert ^2, \\ \Vert a^*a\Psi \Vert ^2&= \Vert a^2\Psi \Vert ^2 + c\Vert a\Psi \Vert ^2 \le d^2\Vert H_0\Psi \Vert ^2 + cd\Vert H_0^{1/2}\Psi \Vert ^2, \\ \Vert aa^*\Psi \Vert ^2&= \Vert (a^*a+c)\Psi \Vert ^2 = \Vert a^*a\Psi \Vert ^2 + 2c\Vert a\Psi \Vert ^2 + c^2\Vert \Psi \Vert ^2 \\&\le d^2\Vert H_0\Psi \Vert ^2+3cd\Vert H_0^{1/2}\Psi \Vert ^2 + c^2\Vert \Psi \Vert ^2, \\ \Vert (a^*)^2\Psi \Vert ^2&= \Vert aa^*\Psi \Vert ^2 + c\Vert a^*\Psi \Vert ^2 \\&\le d^2\Vert H_0\Psi \Vert ^2+3cd\Vert H_0^{1/2}\Psi \Vert ^2 + c^2\Vert \Psi \Vert ^2 + c(d\Vert H_0^{1/2}\Psi \Vert ^2+c\Vert \Psi \Vert ^2) \\&= d^2\Vert H_0\Psi \Vert ^2+4cd\Vert H_0^{1/2}\Psi \Vert ^2 + 2c^2\Vert \Psi \Vert ^2. \end{aligned}$$

Thus, we have

$$\begin{aligned} \Vert \Phi _{{\mathrm {S}}}(g)^2\Psi \Vert ^2&\le 4d^2\Vert H_0\Psi \Vert ^2 + 8cd\Vert H_0^{1/2}\Psi \Vert ^2 + 3c^2\Vert \Psi \Vert ^2 \\&\le \Vert (2dH_0+2c)\Psi \Vert ^2, \end{aligned}$$

and the bound (A.6) holds for all \(\Psi \in {\mathscr {F}}_{\mathrm {b,fin}}(\mathop {{\mathrm {dom}}}(T))\). By a limiting argument, the lemma follows. \(\square \)

On the domains of \(T^{-3/2}\) and \(S^{-3/2}\)

It is shown that \(\mathop {{\mathrm {dom}}}(T^{p})=\mathop {{\mathrm {dom}}}(S^{p})\) for all \(|p|\le 1\) and \(p=2\) in Lemma 3.1. Here, we show the equality for \(p=-3/2\) under the infrared regularity condition.

Lemma B.1

Suppose (B1)–(B5). We further suppose that \(g_n\in \mathop {{\mathrm {dom}}}(T^{-1})\) for all \(n\in {\mathbb {N}}\), and that

$$\begin{aligned} \sum _{n=1}^{\infty }|\lambda _n|\cdot \Vert g_n\Vert \cdot \Vert T^{-1}g_n\Vert <\infty . \end{aligned}$$

Then \(\mathop {{\mathrm {dom}}}(T^{-3/2})=\mathop {{\mathrm {dom}}}(S^{-3/2})\) holds, where S is defined in (5.2).

Proof

Let \(A:=\sum _{n=1}^\infty \lambda _n|g_n\rangle \langle T^{-1}g_n|\). By assumption, A is of trace class. We first show that \(1+A\) is bijective. Let \(u\in \ker (1+A)\) be arbitrary. Since the range of A is contained in \(\mathop {{\mathrm {dom}}}(T^{-1/2})\), the equality \((1+A)u=0\) implies that \(u\in \mathop {{\mathrm {dom}}}(T^{-1/2})\). Hence it follows that

$$\begin{aligned} 0&= T^{-1/2}(1+A)u = T^{-1/2}u + \sum _{n=1}^\infty \lambda _n\langle T^{-1/2}g_n,T^{-1/2}u\rangle T^{-1/2}g_n\\&=\left( 1+\sum _{n=1}^\infty \lambda _n|T^{-1/2}g_n\rangle \langle T^{-1/2}g_n|\right) T^{-1/2}u. \end{aligned}$$

This together with the condition (B5) implies that \(u=0\), and thus \(1+A\) is injective. The Fredholm alternative now tells us that \(1+A\) is bijective.

Set

$$\begin{aligned} {\mathscr {D}}:=\mathop {{\mathrm {dom}}}(T^2)\cap \mathop {{\mathrm {dom}}}(T^{-1/2})=\mathop {{\mathrm {dom}}}(S^2)\cap \mathop {{\mathrm {dom}}}(S^{-1/2}), \end{aligned}$$

and take an arbitrary \(u\in {\mathscr {D}}\). Then we have

$$\begin{aligned} S^{3/2}u&=S^{-1/2}S^2u=S^{-1/2}\left( T^2+\sum _{n=1}^\infty \lambda _n|T^{1/2}g_n\rangle \langle T^{1/2}g_n|\right) u\\&=S^{-1/2}T^{1/2}\left( 1+\sum _{n=1}^\infty \lambda _n|g_n\rangle \langle T^{-1}g_n|\right) T^{3/2}u =\overline{S^{-1/2}T^{1/2}}(1+A)T^{3/2}u. \end{aligned}$$

Note that \(\overline{T^{1/2}S^{-1/2}}\) is bijective with inverse \(\overline{S^{1/2}T^{-1/2}}\) by Lemma 3.2. Since \({\mathscr {D}}\) is a core of both \(S^{3/2}\) and \(T^{3/2}\), we get the operator equality

$$\begin{aligned} S^{3/2} = \overline{S^{-1/2}T^{1/2}}(1+A)T^{3/2}. \end{aligned}$$

By taking the conjugation of both sides, we obtain the operator equality

$$\begin{aligned} S^{3/2} = T^{3/2}(1+A^*)\overline{T^{1/2}S^{-1/2}}, \end{aligned}$$
(B.1)

which in particular implies that the range of \(S^{3/2}\) is contained in the range of \(T^{3/2}\), and thus \(\mathop {{\mathrm {dom}}}(S^{-3/2})\subset \mathop {{\mathrm {dom}}}(T^{-3/2})\) holds. On the other hand, it follows from (B.1) that we have the operator equality

$$\begin{aligned} S^{3/2}\overline{S^{1/2}T^{-1/2}}(1+A^*)^{-1} = T^{3/2}, \end{aligned}$$

whence \(\mathop {{\mathrm {dom}}}(S^{-3/2})\supset \mathop {{\mathrm {dom}}}(T^{-3/2})\) follows. This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuzawa, Y., Sasaki, I. & Usami, K. Explicit diagonalization of pair interaction models. Anal.Math.Phys. 11, 48 (2021). https://doi.org/10.1007/s13324-021-00486-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00486-4

Navigation