Skip to main content
Log in

Large edge magnetism in oxidized few-layer black phosphorus nanomeshes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The formation and control of a room-temperature magnetic order in two-dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graphene nanoribbons (GNRs) and graphene nanomeshes (GNMs), but the measured magnetization remains far too small to allow envisioning practical applications. Herein, we report experimental evidences of large room-temperature edge ferromagnetism (FM) obtained from oxygen (O)-terminated zigzag pore edges of few-layer black phosphorus (P) nanomeshes (BPNMs). The magnetization values per unit area are ~100 times larger than those reported for H-terminated GNMs, while the magnetism is absent for H-terminated BPNMs. The magnetization measurements and the first-principles simulations suggest that the origin of such a magnetic order could stem from ferromagnetic spin coupling between edge P with O atoms, resulting in a strong spin localization at the edge valence band, and from uniform oxidation of full pore edges over a large area and interlayer spin interaction. Our findings pave the way for realizing high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrari, A. C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810.

    Article  Google Scholar 

  2. Roche, S.; Åkerman, J.; Beschoten, B.; Charlier, J. C.; Chshiev, M.; Dash, S. P.; Dlubak, B.; Fabian, J.; Fert, A.; Guimarães, M. et al. Graphene spintronics: The European Flagship perspective. 2D Mater. 2015, 2, 030202.

    Article  Google Scholar 

  3. Yang, H. X.; Hallal, A.; Terrade, D.; Waintal, X.; Roche, S.; Chshiev, M. Proximity effects induced in graphene by magnetic insulators: First-principles calculations on spin filtering and exchange-splitting gaps. Phys. Rev. Lett. 2013, 110, 046603.

    Article  Google Scholar 

  4. Leutenantsmeyer, J. C.; Kaverzin, A. A.; Wojtaszek, M.; van Wees, B. J. Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Mater. 2017, 4, 014001.

    Article  Google Scholar 

  5. Avsar, A.; Tan, J. Y.; Taychatanapat, T.; Balakrishnan, J.; Koon, G. K. W.; Yeo, Y.; Lahiri, J.; Carvalho, A.; Rodin, A. S.; O’Farrell, E. C. T. et al. Spin–orbit proximity effect in graphene. Nat. Commun. 2014, 5, 4875.

    Article  Google Scholar 

  6. Lin, C. F.; Feng, Y. X.; Xiao, Y. D.; Dürr, M.; Huang, X. Q.; Xu, X. Z.; Zhao, R. G.; Wang, E. G.; Li, X.-Z.; Hu, Z. H. Direct observation of ordered configurations of hydrogen adatoms on graphene. Nano Lett. 2015, 15, 903–908.

    Article  Google Scholar 

  7. Magda, G. Z.; Jin, X. Z.; Hagymási, I.; Vancsó, P.; Osváth, Z.; Nemes-Incze, P.; Hwang, C.; Biró, L. P.; Tapasztó, L. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 2014, 514, 608–611.

    Article  Google Scholar 

  8. Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954–17961.

    Article  Google Scholar 

  9. Soriano, D.; Leconte, N.; Ordejón, P.; Charlier, J. C.; Palacios, J. J.; Roche, S. Magnetoresistance and magnetic ordering fingerprints in hydrogenated graphene. Phys. Rev. Lett. 2011, 107, 016602.

    Article  Google Scholar 

  10. Lee, H.; Park, N.; Son, Y. W.; Han, S.; Yu, J. Ferromagnetism at the edges of the stacked graphitic fragments: An ab initio study. Chem. Phys. Lett. 2004, 398, 207–211.

    Article  Google Scholar 

  11. Kusakabe, K.; Maruyama, M. Magnetic nanographite. Phys. Rev. B 2003, 67, 092406.

    Article  Google Scholar 

  12. Shimizu, T.; Haruyama, J.; Marcano, D. C.; Kosinkin, D. V.; Tour, J. M.; Hirose, K.; Suenaga, K. Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons. Nat. Nanotechnol. 2011, 6, 45–50.

    Article  Google Scholar 

  13. Tada, K.; Hashimoto, T.; Haruyama, J.; Yang, H.; Chshiev, M. Spontaneous spin polarization and spin pumping effect on edges of graphene antidot lattices. Phys. Status Solidi B 2012, 249, 2491–2496.

    Article  Google Scholar 

  14. Kato, T.; Nakamura, T.; Kamijyo, J.; Kobayashi, T; Yagi, Y.; Haruyama, J. High-efficiency graphene nanomesh magnets realized by controlling mono-hydrogenation of pore edges. Appl. Phys. Lett. 2014, 104, 252410.

    Article  Google Scholar 

  15. Hashimoto, T.; Kamikawa, S.; Soriano, D.; Pedersen, J. G.; Roche, S.; Haruyama, J. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode. Appl. Phys. Lett. 2014, 105, 183111.

    Article  Google Scholar 

  16. Hashimoto, T.; Kamikwa, S.; Yagi, Y.; Haruyama, J. Electronic properties of nanopore edges of ferromagnetic graphene nanomeshes at high carrier densities under ionic-liquid gating. Mater. Sci. Appl. 2014, 5, 1–9.

    Google Scholar 

  17. Jia, X. T.; Hofmann, M.; Meunier, V.; Sumpter, B. G.; Campos-Delgado, J.; Romo-Herrera, J. M.; Son, H.; Hsieh, Y.-P.; Reina, A.; Kong, J. et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 2009, 323, 1701–1705.

    Article  Google Scholar 

  18. Girit, Ç. Ö.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park, C.-H.; Crommie, M. F.; Cohen, M. L.; Louie, S. G. et al. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705–1708.

    Article  Google Scholar 

  19. You, Y. M.; Ni, Z. H.; Yu, T.; Shen, Z. X. Edge chirality determination of graphene by Raman spectroscopy. Appl. Phys. Lett. 2008, 93, 163112.

    Article  Google Scholar 

  20. Haruyama, J. Graphene and graphene nanomesh spintronics. Electronics 2013, 2, 368–386.

    Article  Google Scholar 

  21. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  22. Churchill, H. O. H.; Jarillo-Herrero, R. Two-dimensional crystals: Phosphorus joins the family. Nat. Nanotechnol. 2014, 9, 330–331.

    Article  Google Scholar 

  23. Koenig, S. P.; Doganov, R. A.; Schmidt, H.; Castro Neto, A. H.; Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 2014, 104, 103106.

    Article  Google Scholar 

  24. Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

    Article  Google Scholar 

  25. Zhu, Z. L.; Li, C.; Yu, W. Y.; Chang, D. H.; Sun, Q.; Jia, Y. Magnetism of zigzag edge phosphorene nanoribbons. Appl. Phys. Lett. 2014, 105, 113105.

    Article  Google Scholar 

  26. Peng, X. H.; Copple, A.; Wei, Q. Edge effects on the electronic properties of phosphorene nanoribbons. J. Appl. Phys. 2014, 116, 144301.

    Article  Google Scholar 

  27. Carvalho, A.; Rodin, A. S.; Castro Neto, A. H. Phosphorene nanoribbons. EPL 2014, 108, 47005.

    Article  Google Scholar 

  28. Ong, Z. Y.; Cai, Y. Q.; Zhang, G.; Zhang, Y.-W. Strong thermal transport anisotropy and strain modulation in singlelayer phosphorene. J. Phys. Chem. C 2014, 118, 25272–25277.

    Article  Google Scholar 

  29. Du, Y. P.; Liu, H. M., Xu, B.; Sheng, L.; Yin, J.; Duan, C. G.; Wan, X. G. Unexpected magnetic semiconductor behavior in zigzag phosphorene nanoribbons driven by half-filled one dimensional band. Sci. Rep. 2015, 5, 8921.

    Article  Google Scholar 

  30. Zhu, W. N.; Yogeesh, M. N.; Yang, S. X.; Aldave, S. H.; Kim, J.-S.; Sonde, S.; Tao, L.; Lu, N. S.; Akinwande, D. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 2015, 15, 1883–1890.

    Article  Google Scholar 

  31. Dai, J.; Zeng, X. C. Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 2014, 5, 1289–1293.

    Article  Google Scholar 

  32. Luo, X.; Lu, X.; Koon, G. K. W.; Castro Neto, A. H.; Özyilmaz, B.; Xiong, Q. H.; Quek, S. Y. Large frequency change with thickness in interlayer breathing mode—Significant interlayer interactions in few layer black phosphorus. Nano Lett. 2015, 15, 3931–3938.

    Article  Google Scholar 

  33. Ziletti, A.; Carvalho, A; Trevisanutto, P. E.; Campbell, D. K.; Coker, D. F.; Castro Neto, A. H. Phosphorene oxides: Bandgap engineering of phosphorene by oxidation. Phys. Rev. B 2015, 91, 085407.

    Article  Google Scholar 

  34. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    Article  Google Scholar 

  35. Gillgren, N.; Wickramaratne, D.; Shi, Y. M.; Espiritu, T.; Yang, J. W.; Hu, J.; Wei, J.; Liu, X.; Mao, Z. Q.; Watanabe, K. et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2015, 2, 011001.

    Article  Google Scholar 

  36. Zhu, Z.; Tománek, D. Semiconducting layered blue phosphorus: A computational study. Phys. Rev. Lett. 2014, 112, 176802.

    Article  Google Scholar 

  37. Tongay, S.; Varnoosfaderani, S. S.; Appleton, B. R.; Wu, J. Q.; Hebard, A. F. Magnetic properties of MoS2: Existence of ferromagnetism. Appl. Phys. Lett. 2012, 101, 123105.

    Article  Google Scholar 

  38. Ohata, C.; Tagami, R.; Nakanishi, Y.; Iwaki, R.; Nomura, K.; Haruyama, J. Hexagonal boron-nitride nanomesh magnets. Appl. Phys. Lett. 2016, 109, 133110.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Akimitsu, K. Horigane, T. Muranaka, Y. K. Fukai, T. Enoki, Y. Otani, S. Murakami, M. Yamamoto, S. Tarucha, T. Ando, A. H. Macdonald, P. Seneor, R. Wiesendanger, M. S. Dresselhaus, P. Herrero, and P. Kim for their technical contributions, fruitful discussions, and encouragements. This work at Aoyama Gakuin was partly supported by a Grantin-aid for Scientific Research (Basic research A: 24241046 and Challenging Exploratory Research: 15K13277) and grant for private University in MEXT and AOARD grant (No. 135049) in U.S. Air Force Office of Scientific Research. The work in the University of Tokyo was also supported by Grant-in-Aid for Scientific Research on Innovative Area, “Nano Spin Conversion Science” (No. 26103003), and by Grants (Nos. 25247051 and 15K17676). S. R. acknowledges Funding from the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (No. FIS2015-67767-P (MINECO/FEDER)), the Secretaria de Universidades e Investigación del Departamento de Economía y Conocimiento de la Generalidad de Cataluña, and the Severo Ochoa Program (MINECO, No. SEV-2013-0295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Haruyama.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakanishi, Y., Ishi, A., Ohata, C. et al. Large edge magnetism in oxidized few-layer black phosphorus nanomeshes. Nano Res. 10, 718–728 (2017). https://doi.org/10.1007/s12274-016-1355-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1355-8

Keywords

Navigation