Skip to main content
Log in

Unexpected δ-Phase Formation in Additive-Manufactured Ni-Based Superalloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

An as-built and solutionized Ni-based superalloy built by additive manufacturing through a direct metal laser sintering technique is characterized to understand the microstructural differences as compared to the as-wrought alloy. Initially, each layer undergoes rapid solidification as it is melted by the laser; however, as the part is built, the underlying layers experience a variety of heating and cooling cycles that produce significant microsegregation of niobium which allows for the formation of the deleterious δ-phase. The as-built microstructure was characterized through Vickers hardness, optical microscopy, scanning and transmission electron microscopy, electron back-scattering diffraction, x-ray diffraction, and synchrotron x-ray microLaue diffraction. The isothermal formation and growth of the δ-phase were characterized using synchrotron-based in situ small angle and wide angle x-ray scattering experiments. These experimental results are compared with multicomponent diffusion simulations that predict the phase fraction and composition. The high residual stresses and unexpected formation of the δ-phase will require further annealing treatments to be designed so as to remove these deficiencies and obtain an optimized microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Certain commercial equipment, instruments, software, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

References

  1. D.M. Shah and D.N. Duhl: Proc. 5th Int. Symp. Superalloys, vol 1 (1984) p. 105.

  2. X. Xie, G. Wang, J. Dong, C. Xu, W. Cao, and R. Kennedy: Proc. 6th Int. Symp. Superalloys 718, 625, 706 Var. Deriv., vol 1, (2005), p. 179.

  3. W. Cao and R. Kennedy: Proc. 10th Int. Symp. Superalloys 2004, vol 1 (2004) p. 91.

  4. C.L. Thomas, T.M. Gaffney, S. Kaza, and C.H. Lee, Proc. Aero. App. Conf. (1996). doi:10.1109/AERO.1996.499663.

    Google Scholar 

  5. Y. Song, Y. Yan, R. Zhang, D. Xu, and F. Wang, J. Mater. Process. Technol. 120, 237 (2002).

    Article  Google Scholar 

  6. K. Giannatsis and V. Dedoussis, Int. J. Adv. Des. Manuf. Technol. 40, 116 (2009).

    Article  Google Scholar 

  7. E. Sachlos and J.T. Czernuszka, Eur. Cells Mater. 5, 29 (2003).

    Article  Google Scholar 

  8. N.A. Waterman and P. Dickens, World Class Des. Manuf. 1, 27 (1994). doi:10.1108/09642369210056629.

    Article  Google Scholar 

  9. ASTM, Annual Book of ASTM Standards (2010). doi:10.1520/F2792-10.

  10. A. Simchi, F. Petzoldt, and H. Pohl, J. Mater. Process. Technol. 141, 319 (2003).

    Article  Google Scholar 

  11. A. Simchi, Mater. Sci. Eng. A 428, 148 (2006).

    Article  Google Scholar 

  12. G.J. Booysen, M. Truscott, J. Els, and D.J. De Beer, Innovative Dev. Des. Manuf., Proc. 5th Int. Conf. Adv. Res. Rapid Prototyping, vol 1, (2011), p. 145.

  13. P.L. Blackwell, J. Mater. Process. Technol. 170, 240 (2005).

    Article  Google Scholar 

  14. J. Delgado, J. Ciurana, and C.A. Rodriguez, J. Adv. Manuf. Technol. 60, 601 (2012).

    Article  Google Scholar 

  15. J.P. Kruth, G. Levy, F. Klocke, and T. Childs, CIRP Ann. 56, 730 (2012).

    Article  Google Scholar 

  16. Q. Jia and D. Gu, J. Alloys Compd. 585, 713 (2014).

    Article  Google Scholar 

  17. ATI, “718Plus Alloy Datasheet, UNS NO7818.” https://www.atimetals.com/Documents/ati_718plus_tds_en_v3.pdf. Accessed 25 Aug 2015.

  18. J. Ilavsky, P.R. Jemian, A.J. Allen, F. Zhang, L.E. Levine, and G.G. Long, J. Appl. Crystallogr. 42, 469 (2009).

    Article  Google Scholar 

  19. J. Ilavsky, F. Zhang, A.J. Allen, L.E. Levine, P.R. Jemian, and G.G. Long, Metall. Mater. Trans. A 44, 68 (2013).

    Article  Google Scholar 

  20. J. Ilavsky, A.J. Allen, L.E. Levine, F. Zhang, P.R. Jemian, and G.G. Long, J. Appl. Crystallogr. 45, 1318 (2012).

    Article  Google Scholar 

  21. L. Levine, B. Larson, W. Yang, M.E. Kassner, J. Tischler, M.A. Delos-Reyes, R.J. Fields, and W. Liu, Nat. Mater. 5, 619 (2006).

    Article  Google Scholar 

  22. L. Levine, C. Okoro, and R. Xu, IUCrJ. (2015). doi:10.1107/S2052252515015031.

    Google Scholar 

  23. J. Wang, B.H. Toby, P.L. Lee, L. Ribaud, S.M. Antao, C. Kirtz, M. Ramanthan, R.B. Von Dreele, and M.A. Beno, Rev. Sci. Instrum. 79, 085105 (2008).

    Article  Google Scholar 

  24. P. Pranaam, F.J. Margetan, and R.B. Thompson, AIP Conf. Proc. 700, 1061 (2004).

    Article  Google Scholar 

  25. O. Messe, J. Barnard, E. Pickering, P. Midgley, and C. Rae, Philos. Mag. 94, 1132 (2014).

    Article  Google Scholar 

  26. E. Pickering, H. Mathus, A. Bhowmik, O. Messe, J. Barnard, M. Hardy, R. Krakow, K. Loehnert, H. Stone, and C. Rae, Acta Mater. 60, 2757 (2012).

    Article  Google Scholar 

  27. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Metall. Mater. Trans. A 19, 453 (1988).

    Article  Google Scholar 

  28. K. Unocic, R. Hayes, M. Mills, and G. Daehn, Metall. Mater. Trans. A 41, 409 (2010).

    Article  Google Scholar 

  29. W. Cao, Proc. 6th Int. Symp. Superalloys 718, 625, 706 Var. Deriv, vol 1 (2005), p. 165.

  30. R.E. Schafrik, D.D. Ward, and J.R. Groh, Proc. 5th Int. Symp. Superalloys 718, 625, 706 Var. Deriv., vol 1 (2001), p. 1.

  31. S. Azadian, L.Y. Wei, and R. Warren, Mater. Charact. 53, 7 (2004).

    Article  Google Scholar 

  32. H. Zhang, S. Zhang, M. Cheng, and Z. Li, Mater. Charact. 61, 49 (2010).

    Article  Google Scholar 

  33. Y. Huang and T.G. Langdon, J. Mater. Sci. 42, 421 (2007).

    Article  Google Scholar 

  34. J. Ilavsky and P.R. Jemian, J. Appl. Crystallogr. 42, 347 (2009).

    Article  Google Scholar 

  35. Z. Jian and W. Hejing, Chin. J. Geochem. 22, 38 (2003).

    Article  Google Scholar 

  36. M. Wojdry, J. Appl. Crystallogr. 43, 1126 (2010).

    Article  Google Scholar 

  37. J.B. Nelson and D.P. Riley, Proc. Phys. Soc. Lond. 57, 160 (1945).

    Article  Google Scholar 

  38. B. Cullity and S. Stock, Elements of X-ray Diffraction, 3rd ed. (Upper Saddle River: Prentice Hall, 2001).

    Google Scholar 

  39. G.H. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Article  Google Scholar 

  40. Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, and X. Zeng, J. Alloys Compd 513, 518 (2012).

    Article  Google Scholar 

  41. K. Amato, S. Gaytan, L. Murr, E. Martinez, P. Shindo, J. Hernandez, S. Collins, and F. Medina, Acta Mater. 60, 2229 (2012).

    Article  Google Scholar 

  42. K. Amato, J. Hernandez, L. Murr, E. Martinez, S. Gaytan, and P. Shindo, J. Mater. Sci. Res. 1, 3 (2012).

    Google Scholar 

  43. K. Mumtz, P. Erasenthiran, and N. Hopkinson, J. Mater. Process. Technol. 195, 77 (2008).

    Article  Google Scholar 

  44. M.C. Flemings, Metall. Trans. 5, 2121 (1974).

    Article  Google Scholar 

  45. W. Kurz and D.J. Fischer, Fundamentals of Solidification, 1st ed. (Adermannsdorf: Trans-Tech. Publications, 1986).

    Google Scholar 

  46. M. Rappaz, S.A. David, J.M. Vitek, and L.A. Boatner, Metall. Trans. A 20, 1125 (1989).

    Article  Google Scholar 

  47. S.A. David, J.M. Vitek, M. Rappaz, and L.A. Boatner, Metall. Trans. A 21, 1753 (1990).

    Article  Google Scholar 

  48. J.M. Vitek, S.A. David, M. Rappaz, and L.A. Boatner, Int. Trends Weld. Sci. Technol., Proc. 3rd Int. Conf. Trends Weld. Res., vol 1, (1993), p. 167.

  49. TCS Ni-Alloys database v6.1, Thermo-Calc Software, (Stockholm, 2013).

Download references

Acknowledgements

The use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CG11357. Research performed in part at the NIST Center for Nanoscale Science and Technology. This material is based upon work supported by the Defense Advanced Research Projects Agency under Contract No. HROO 11-12-C-0037. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Defense Advanced Research Projects Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Idell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idell, Y., Levine, L.E., Allen, A.J. et al. Unexpected δ-Phase Formation in Additive-Manufactured Ni-Based Superalloy. JOM 68, 950–959 (2016). https://doi.org/10.1007/s11837-015-1772-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1772-2

Navigation