Skip to main content
Log in

Output feedback adaptive super twisting sliding mode control for quadrotor UAVs

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

In this paper, a sliding mode control with adaptive gain combined with a high-order sliding mode observer to solve the tracking problem for a quadrotor UAV is addressed, in presence of bounded external disturbances and parametric uncertainties. The high order sliding mode observer is designed for estimating the linear and angular speed in order to implement the proposed scheme. Furthermore, a Lyapunov function is introduced to design the controller with the adaptation law, whereas an analysis of finite time convergence towards to zero is provided, where sufficient conditions are obtained. Regarding previous works from literature, one important advantage of proposed strategy is that the gains of control are parameterized in terms of only one adaptive parameter, which reduces the control effort by avoiding gain overestimation. Numerical simulations for tracking control of the quadrotor are given to show the performance of proposed adaptive control–observer scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Hassalanian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99–131.

    Article  ADS  Google Scholar 

  2. Valavanis, K. P. (2007). Advances in unmnned aerial vehicles: State of the art and the road to autonomy. Springer.

    Book  Google Scholar 

  3. Raffo, G. V., Ortega, M. G., & Rubio, F. R. (2008). Backstepping/nonlinear H\(\infty \) control for path tracking of a quadrotor unmanned aerial vehicle. In American control conference (pp. 3356–3361). IEEE.

  4. Qu, Y., Wu, J., Xiao, B., & Yuan, D. (2017). A fault-tolerant cooperative positioning approach for multiple UAVs. IEEE Access, 5, 15630–15640.

    Article  Google Scholar 

  5. Perruquetti, W., & Barbot, J. P. (2002). Sliding mode control in engineering. CRC Press.

  6. Utkin, V., & Lee, H. (2006). Chattering problem in sliding mode control systems. In International workshop on variable structure systems (pp. 346–350). IEEE.

  7. Tseng, M. L., & Chen, M. S. (2010). Chattering reduction of sliding mode control by low-pass filtering the control signal. Asian Journal of Control, 12(3), 392–398.

    Article  MathSciNet  Google Scholar 

  8. Bartolini, G., Ferrara, A., Levant, A., & Usai, E. (1999). On second order sliding mode controllers. Variable structure systems, sliding mode and nonlinear control (pp. 329–350). Springer.

  9. Fridman, L., Moreno, J., & Iriarte, R. (2011). Sliding modes after the first decade of the 21st century. Lectures Notes in Control and Information Sciences, 412, 113–149.

    MathSciNet  Google Scholar 

  10. Chriette, A., Plestan, F., Castañeda, H., Pal, M., Guillo, M., Odelga, M., & Chandra, R. (2016). Adaptive robust attitude control for UAVs-design and experimental validation. International Journal of Adaptive Control and Signal Processing, 30(8), 1478–1493.

    Article  MathSciNet  Google Scholar 

  11. Mofid, O., & Mobayen, S. (2018). Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties. ISA Transactions, 72, 1–14.

    Article  PubMed  Google Scholar 

  12. Xiong, X., Kamal, S., & Jin, S. (2018). Adaptive Gains to super-twisting technique for sliding mode design. Asian Journal of Control, 23(1), 362–373.

    Article  MathSciNet  Google Scholar 

  13. Yao, J., Jiao, Z., & Ma, D. (2013). Adaptive robust control of DC motors with extended state observer. IEEE Transactions on Industrial Electronics, 61(7), 3530–3637.

    Google Scholar 

  14. Berkane, S., Tayebi, A., & De Marco, S. (2021). A nonlinear navigation observer using IMU and generic position information. Automatica, 127, 109513.

    Article  MathSciNet  Google Scholar 

  15. Gu, N., Peng, Z., Wang, D., Liu, L., & Jiang, Y. (2020). Nonlinear observer design for a robotic unmanned surface vehicle with experiment results. Applied Ocean Research, 95, 102028.

    Article  Google Scholar 

  16. Jafari, M. (2015). Optimal redundant sensor configuration for accuracy increasing in space inertial navigation system. Aerospace Science and Technology, 47, 467–472.

    Article  Google Scholar 

  17. Benallegue, A., Mokhtari, A., & Fridman, L. (2008). High-order sliding-mode observer for a quadrotor UAV. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 18(4), 427–440.

    Article  MathSciNet  Google Scholar 

  18. Cano-González, J. A., Salas-Peña, O., Gutiérrez-Martínez, S. V., & DeLeón-Morales, J. (2021). Quadrotor altitude control based on sliding mode control. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, 543–551.

    Article  Google Scholar 

  19. Moreno, J. A., & Osorio, M. (2012). Strict Lyapunov functions for the super-twisting algorithm. IEEE Transactions on Automatic Control, 57(4), 1035–1040.

    Article  MathSciNet  Google Scholar 

  20. Chalanga, A., Kamal, S., Fridman, L., Bandyopahdhyay, B., & Moreno, J. A. (2016). Implementation of super-twisting control: Super-twisting and higher order sliding-mode observer-based approaches. IEEE Transactions on Industrial Electronics, 63(6), 3677–3685.

    Article  Google Scholar 

  21. Gonzalez-Hernandez, I., Muñoz, F., Salazar, S., Espinoza, E. S., & Lozano, R. (2017). Real-time altitude control for a quadrotor helicopter using a super-twisting controller based on high-order sliding mode observer. International Journal of Advanced Robotic Systems, 14(1), 1729881416687113.

    Article  Google Scholar 

  22. Gutiérrez-Martínez, S. V., DeLeón-Morales, J., Plestan, F., & Salas-Peña, O. (2019). A simplified version of adaptive super-twisting control. International Journal of Robust and Nonlinear Control, 29(16), 5704–5719.

    Article  MathSciNet  Google Scholar 

  23. Mofid, O., Mobayen, S., & Wong, W.-K. (2021). Adaptive terminal sliding mode control for attitude and position tracking control of quadrotor UAVs in the existence of external disturbance. IEEE Access, 9, 3428–3440.

    Article  Google Scholar 

  24. Das, A., Subbarao, K., & Lewis, F. (2009). Dynamic inversion with zero-dynamics stabilisation for quadrotor control. IET Control Theory and Applications, 3(3), 303–314.

    Article  MathSciNet  Google Scholar 

  25. Deutsch, F., Li, W., & Park, S. (1989). Characterizations of continuous and Lipschitz continuous metric selections in normed linear spaces. Journal of Approximation Theory, 8(3), 297–314.

    Article  MathSciNet  Google Scholar 

  26. Bristeau, P.-J., Callou, F., Vissière, D., & Petit, N. (2011). The navigation and control technology inside the AR.Drone micro UAV. IFAC Proceedings Volumes, 44(1), 1477–1484.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Salas-Peña.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas-Peña, O., DeLeón-Morales, J. & Gutiérrez-Martínez, S.V. Output feedback adaptive super twisting sliding mode control for quadrotor UAVs. Control Theory Technol. 22, 92–105 (2024). https://doi.org/10.1007/s11768-023-00195-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-023-00195-2

Keywords

Navigation