Skip to main content
Log in

Unknown system dynamics estimator-based impedance control for lower limb exoskeleton with enhanced performance

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

In this article, an unknown system dynamics estimator-based impedance control method is proposed for the lower limb exoskeleton to stimulate the tracking flexibility with the terminal target position when suffering parametric inaccuracies and unexpected disturbances. To reinforce the robust performance, via constructing the filtering operation-based dynamic relation, i.e., invariant manifold, the unknown system dynamics estimators are employed to maintain the accurate perturbation identification in both the hip and knee subsystem. Besides, a funnel control technique is designed to govern the convergence process within a minor overshoot and a higher steady-state precision. Meanwhile, an interactive complaint result can be obtained with the aid of the impedance control, where the prescribed terminal trajectory can be adjusted into the interaction variable-based target position by the force–position mapping, revealing the dynamic influence between the impedance coefficient (stiffness and damping) and the adjusted position magnitude. A sufficient stability analysis verifies the ultimately uniformly bounded results of all the error signals, and even the angle errors can be regulated within the predefined funnel boundary in the whole convergence. Finally, some simulations are provided to demonstrate the validity and superiority including the enhanced interaction flexibility and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available within the article.

References

  1. Ibrahim, T., Shivesh, K., & Melya, B. (2022). A survey on design and control of lower extremity exoskeletons for bipedal walking. Applied Sciences-Basel, 12(5), 2395.

    Article  Google Scholar 

  2. Arcos-Legarda, J., Torres, D., Velez, F., Rodriguez, H., Parra, A., & Gutierrez, A. (2023). Mechatronics design of a gait-assistance exoskeleton for therapy of children with Duchenne muscular dystrophy. Applied Sciences-Basel, 13(2), 839.

    Article  CAS  Google Scholar 

  3. Masengo, G., Zhang, X. D., Dong, R. L., Alhassan, A. B., Hamza, K., & Mudaheranwa, E. (2023). Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research. Frontiers in Neurorobotics, 16, 913748.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Susanto, S., Simorangkir, I. T., Analia, R., Analia, R., Pamungkas, D. S., Soebhakti, H., Sani, A., & Caesarendra, W. (2021). Real-time identification of knee joint walking gait as preliminary signal for developing lower limb exoskeleton. Electronics, 10(17), 2117.

    Article  Google Scholar 

  5. Zhang, Y., Bressel, M., De Groof, S., Labey, L., & Peyrodie, L. (2023). Design and control of a size-adjustable pediatric lower-limb exoskeleton based on weight shift. IEEE Access, 11, 6372–6384.

    Article  Google Scholar 

  6. Park, K. W., Choi, J., & Kong, K. (2023). Hybrid filtered disturbance observer for precise motion generation of a powered exoskeleton. IEEE Transactions on Industrial Electronics, 70(1), 646–656.

    Article  Google Scholar 

  7. Sun, Z. X., Qiu, J. X., Zhu, J. H., & Li, S. (2022). A composite position control of flexible lower limb exoskeleton based on second-order sliding mode. Nonlinear Dynamics, 111(2), 1657–1666.

    Article  Google Scholar 

  8. Dao, Q. T., Dinh, V., Trinh, M. C., Nguyen, V. L., Duong, M. D., & Bui, N. T. (2022). Nonlinear extended observer-based ADRC for a lower-limb PAM-based exoskeleton. Actuators, 11(12), 369.

    Article  Google Scholar 

  9. Wang, J., Liu, J. H., Zhang, G. W., & Guo, S. (2022). Periodic event-triggered sliding mode control for lower limb exoskeleton based on human-robot cooperation. ISA Transactions, 123, 87–97.

    Article  PubMed  Google Scholar 

  10. Shao, X. L., Li, S. X., Zhang, W. D., & Wu, E. Q. (2023). Distance-based elliptical circumnavigation control for non-holonomic robots with event-triggered unknown system dynamics estimators. IEEE Transactions on Intelligent Transportation Systems, 24(4), 3986–3998.https://doi.org/10.1109/TITS.2023.3234369

  11. Na, J., Yang, J., Wang, S. B., Gao, G., & Yang, C. (2021). Unknown dynamics estimator-based output-feedback control for nonlinear pure-feedback systems. IEEE Transactions on Systems Man Cybernetics-Systems, 51(6), 3832–3843.

    Article  Google Scholar 

  12. Xing, Y. S., Na, J., Chen, M. R., Costa-Castello, R., & Roda, V. (2022). Adaptive nonlinear parameter estimation for a proton exchange membrane fuel cell. IEEE Transactions on Power Electronics, 37(8), 9012–9023.

    Article  ADS  Google Scholar 

  13. Wang, S. B., Tao, L., Chen, Q., Na, J., & Ren, X. (2020). USDE-based sliding mode control for servo mechanisms with unknown system dynamics. IEEE-ASME Transactions on Mechatronics, 25(2), 1056–1066.

    Article  Google Scholar 

  14. He, S. D., Dai, S. L., Zhao, Z. J., & Zou, T. (2022). Uncertainty and disturbance estimator-based distributed synchronization control for multiple marine surface vehicles with prescribed performance. Ocean Engineering, 261, 111867.

    Article  Google Scholar 

  15. Ilchmann, A., Ryan, E. P., & Townsend, P. (2006). Tracking control with prescribed transient behaviour for systems of known relative degree. System and Control Letters, 55(5), 396–406.

    Article  MathSciNet  Google Scholar 

  16. Zahedi, M., & Binazadeh, T. (2020). Robust output tracking of nonlinear systems with transient improvement via funnel-based sliding mode control. Transactions of the Institute of Measurement and Control, 42(16), 3225–3233.

    Article  ADS  Google Scholar 

  17. Wang, S. B., Li, S. Q., Chen, Q., Ren, X., & Yu, H. (2022). Funnel tracking control for nonlinear servo drive systems with unknown disturbances. ISA Transactions, 128, 328–335.

    Article  PubMed  Google Scholar 

  18. Lee, J. G., Trenns, S., & Shim, H. (2022). Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling. Automatica, 141, 110276.

    Article  MathSciNet  Google Scholar 

  19. Zhang, W. H., Shao, X. L., Zhang, W. D., Qi, J., & Li, H. (2022). Unknown input observer-based appointed-time funnel control for quadrotors. Aerospace Science and Technology, 126, 107351.

    Article  Google Scholar 

  20. Sun, H. B., Hou, L. L., & Wei, Y. L. (2022). Decentralized dynamic event-triggered output feedback adaptive fixed-time funnel control for interconnection nonlinear systems. IEEE Transactions on Neural Network and Learning Systems. https://doi.org/10.1109/TNNLS.2022.3183290

    Article  Google Scholar 

  21. Min, X., Baldi, S., & Yu, W. W. (2022). Distributed output feedback funnel control for uncertain nonlinear multiagent systems. IEEE Transactions on Fuzzy Systems, 30(9), 3708–3721.

    Article  Google Scholar 

  22. Liu, L., Leonhardt, S., Bergmann, L., & Misgeld, B. J. (2022). Composite performance of variable stiffness actuator for exoskeleton administrated via impedance control and disturbance observer. Mechanism and Machine Theory, 179, 105096.

    Article  Google Scholar 

  23. Li, Z. J., Li, Q. J., Huang, P. B., Xia, H., & Li, G. (2023). Human-in-the-loop adaptive control of a soft exo-suit with actuator dynamics and ankle impedance adaptation. IEEE Transactions on Cybernetics, 53(12), 7920–7932. https://doi.org/10.1109/TCYB.2023.3240231

  24. Foroutannia, A., Akbarzadeh-T, M. R., Akbarzadeh, A., & Tahamipour-Z, S. M. (2023). Adaptive fuzzy impedance control of exoskeleton robots with electromyography-based convolutional neural networks for human intended trajectory estimation. Mechatronics, 91, 102952.

    Article  Google Scholar 

  25. Xiong, X. F., Do, C. D., & Manoonpong, P. (2022). Learning-based multifunctional elbow exoskeleton control. IEEE Transactions on Industrial Electronics, 39(9), 9216–9224.

    Article  Google Scholar 

  26. Yang, Y., Huang, D. Q., Jin, C. W., Liu, X., & Li, Y. (2022). Neural learning impedance control of lower limb rehabilitation exoskeleton with flexible joints in the presence of input constraints. International Journal of Robust and Nonlinear Control, 33(7), 4191–4209. https://doi.org/10.1002/rnc.6390

  27. Gonzalez, J. A. C., Salas-Pena, O., & De Leon-Morales, J. (2021). Observer-based super twisting design: A comparative study on quadrotor altitude control. ISA Transactions, 109, 307–314.

    Article  PubMed  Google Scholar 

  28. Dalla Gasperina, S., Longatelli, V., Braghin, F., Pedrocchi, A., & Gandolla, M. (2022). Development and electromyographic validation of a compliant human-robot interaction controller for cooperative and personalized neurorehabilitation. Frontiers in Neurorobotics, 15, 734130.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen, Z. L., Guo, Q., Li, T. S., Yan, Y., & Jiang, D. (2022). Gait prediction and variable admittance control for lower limb exoskeleton with measurement delay and extended-state-observer. IEEE Transactions on Neural Networks and Learning Systems, 34(11), 8693–8706. https://doi.org/10.1109/TNNLS.2022.3152255

    Article  MathSciNet  Google Scholar 

  30. Wang, Y.F., Liu, Z., Zhu, L.C., Li, X., & Wang, H. (2020). An impedance control method of lower limb exoskeleton rehabilitation robot based on predicted forward dynamics. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications, Guangzhou, China, pp. 1515–1518.

  31. Shao, X. L., Zhang, J. T., Zhang, W. D., & Zuo, Z. (2023). Multi-circular formation control with reinforced transient profiles for nonholonomic vehicles: A path-following framework. Defence Technology. https://doi.org/10.1016/j.dt.2023.02.023

    Article  Google Scholar 

  32. Zhang, F., Shao, X. L., Xia, Y., & Zhang, W. (2023). Elliptical encirclement control capable of reinforcing performances for UAVs around a dynamic target. Defence Technology. https://doi.org/10.1016/j.dt.2023.03.014

    Article  Google Scholar 

  33. Rojas, H. D., & Cortes-Romero, J. (2023). On the equivalence between generalized proportional integral observer and disturbance observer. ISA Transactions, 133, 397–411.

    Article  PubMed  Google Scholar 

  34. Sun, J. K., & Zeng, Z. G. (2023). Disturbance rejection control for networked control systems using subpredictor-based extended state observer. IEEE Transactions on Systems Man Cybernetics Systems, 53(6), 3629–3639. https://doi.org/10.1109/TSMC.2022.3230045

    Article  Google Scholar 

  35. Zhang, J. T., Shao, X. L., Zhang, W. D., & Na, J. (2023). Path-following control capable of reinforcing transient performances for networked mobile robots over a single curve. IEEE Transactions on Instrumentation and Measurement, 72, 3513–312. https://doi.org/10.1109/TIM.2022.3201930

    Article  Google Scholar 

  36. Long, Y., & Peng, Y. J. (2022). Extended state observer-based nonlinear terminal sliding mode control with feedforward compensation for lower extremity exoskeleton. IEEE Access, 10, 8643–8652.

    Article  Google Scholar 

  37. Lv, J. X., Wang, C. H., Kao, Y. G., et al. (2023). A fixed-time distributed extended state observer for uncertain second-order nonlinear system. ISA Transactions, 138, 373–383. https://doi.org/10.1016/j.isatra.2023.02.016

    Article  PubMed  Google Scholar 

  38. Shao, X. L., Li, S. X., Zhang, W. D., & Zhang, Q. (2023). GPS-free collaborative elliptical circumnavigation control for multiple non-holonomic vehicles, 8(6), 3750–3761. IEEE Transaction on Intelligent Vehicles. https://doi.org/10.1109/TIV.2023.3240855

    Article  Google Scholar 

  39. Li, S. X., Shao, X. L., Zhang, W. D., & Zhang, Q. (2023). Distributed multicircular circumnavigation control for UAVs with desired angular spacing. Defence Technology. https://doi.org/10.1016/j.dt.2023.02.007

    Article  Google Scholar 

  40. Rios, H., Falcon, R., Gonzales, O. A., & Dzul, A. (2019). Continuous sliding-mode control strategies for quadrotor robust tracking: Real-time application. IEEE Transactions on Industrial Electronics, 66(2), 1264–1272.

    Article  Google Scholar 

  41. Chen, W. H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-observer-based control and related methods-an overview. IEEE Transactions on Industrial Electronics, 63(2), 1083–1095.

    Article  Google Scholar 

  42. Aole, S., Elamvazuthi, I., Waghmare, L., Patre, B., Bhaskarwar, T., Meriaudeau, F., & Su, S. (2022). Active disturbance rejection control based sinusoidal trajectory tracking for an upper limb robotic rehabilitation exoskeleton. Applied Science-Basel, 12(3), 1287.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhao Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

This work was supported in part by the Young Talent Fund of Association for Science and Technology in Shaanxi, China (No. 20230126).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Song, P., Wu, M. et al. Unknown system dynamics estimator-based impedance control for lower limb exoskeleton with enhanced performance. Control Theory Technol. 22, 56–68 (2024). https://doi.org/10.1007/s11768-023-00189-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-023-00189-0

Keywords

Navigation