Skip to main content
Log in

Response of rGO and Pd-Decorated rGO to Carbon Monoxide Gas

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (rGO) in combination with palladium (Pd) thin film for the detection of hydrogen (H2) has been widely reported; Pd-decorated rGO for carbon monoxide (CO) gas sensing is rarely discussed. This study reveals palladium nanoparticle-decorated rGO (rGO-Pd) detects CO gas easily for a wide range of temperatures (RT–150°C). The study also shows that the device detects CO with detection limit of 50 parts per million (ppm). Percentage response (%R) of pure rGO- and rGO-Pd-based sensors increase with both concentration and operating temperature increase. CO sensing of rGO also improves when decorated with Pd nanoparticles. Further, the increase in the %R in rGO-Pd is because of the synergistic electron exchange activity of rGO and Pd. New mechanistic insight into the dependence of sensing performance of rGO and rGO-Pd on pre-adsorbed oxygen species and baseline resistance drift at a particular temperature is proposed. The detailed analysis of the variation in adsorbed oxygen and number of electrons exchanged during CO molecule adsorption at different temperatures is discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N.H. Ha, D.D. Thinh, N.T. Huong, N.H. Phuong, P.D. Thach, and H.S. Hong, Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide. Appl. Surf. Sci. 434, 1048 (2018).

    Article  Google Scholar 

  2. Z.U. Abideen, J.H. Kim, A. Mirzaei, H.W. Kim, and S.S. Kim, Sensing behavior to ppm-level gases and synergistic sensing mechanism in metal-functionalized rGO-loaded ZnO nanofibers. Sens. Actuators B Chem. 255, 1884 (2018).

    Article  Google Scholar 

  3. J. Cookson, The preparation of palladium nanoparticles. Platinum Metals Rev. 56, 83 (2012).

    Article  Google Scholar 

  4. C.M. Chang, M.H. Hon, and C. Leu, Improvement in CO sensing characteristics by decorating ZnO nanorod arrays with Pd nanoparticles and the related mechanisms. RSC Adv. 2, 2469 (2012).

    Article  CAS  Google Scholar 

  5. N.D. Hoa, P. Van Tong, N. Van Duy, T.D. Dao, H.V. Chung, T. Nagao, and N. Van Hieu, Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance. J. Hazard. Mater. 265, 124 (2014).

    Article  Google Scholar 

  6. D. Zhang, C. Jiang, J. Liu, and Y. Cao, Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens. Actuators B Chem. 247, 875 (2017).

    Article  CAS  Google Scholar 

  7. F. Liang, S. Chen, W. Xie, and C. Zou, The decoration of Nb-doped TiO2 microspheres by reduced graphene oxide for enhanced CO gas sensing. J. Phys. Chem. Solids 114, 195 (2018).

    Article  CAS  Google Scholar 

  8. D. Panda, A. Nandi, S.K. Datta, H. Saha, and S. Majumdar, Selective detection of carbon monoxide (CO) gas by reduced graphene oxide (rGO) at room temperature. RSC Adv. 6, 47337 (2016).

    Article  CAS  Google Scholar 

  9. F. Pan, H. Lin, H. Zhai, Z. Miao, Y. Zhang, K. Xu, B. Guan, H. Huang, and H. Zhang, Pd-doped TiO2 film sensors prepared by premixed stagnation flames for CO and NH3 gas sensing. Sens. Actuators B Chem. 261, 451 (2018).

    Article  CAS  Google Scholar 

  10. M. Reddeppa, S.B. Mitta, T. Chandrakalavathi, B.G. Park, G. Murali, R. Jeyalakshmi, S.G. Kim, S.H. Park, and M.D. Kim, Solution-processed Au@ rGO/GaN nanorods hybrid-structure for self-powered UV, visible photodetector and CO gas sensors. Curr. Appl. Phys. 19, 938 (2019).

    Article  Google Scholar 

  11. N. Sharma, H.S. Kushwaha, S.K. Sharma, and K. Sachdev, Fabrication of LaFeO3 and rGO-LaFeO3 microspheres based gas sensors for detection of NO2 and CO. RSC Adv. 10, 1297 (2020).

    Article  CAS  Google Scholar 

  12. P.A. Pandey, N.R. Wilson, and J.A. Covington, Pd-doped reduced graphene oxide sensing films for H2 detection. Sens. Actuators B Chem. 183, 478 (2013).

    Article  CAS  Google Scholar 

  13. P. Bhardwaj, P.B. Barman, and S.K. Hazra, Effect of capping-agent concentration on size and size dispersity of palladium nanoparticles for resistive-type hydrogen sensors. J. Electron. Mater. 49, 6656 (2020).

    Article  CAS  Google Scholar 

  14. M.R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S.I. Noro, and T. Yamada, Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 135, 8097 (2013).

    Article  CAS  Google Scholar 

  15. S.I. El-Hout, S.M. El-Sheikh, H.M. Hassan, F.A. Harraz, I.A. Ibrahim, and E.A. El-Sharkawy, A green chemical route for synthesis of graphene supported palladium nanoparticles: a highly active and recyclable catalyst for reduction of nitrobenzene. Appl. Catal. A: Gen. 503, 176 (2015).

    Article  CAS  Google Scholar 

  16. Z. Wei, R. Pan, Y. Hou, Y. Yang, and Y. Liu, Graphene-supported Pd catalyst for highly selective hydrogenation of resorcinol to 1, 3-cyclohexanedione through giant π-conjugate interactions. Sci. Rep. 5, 1 (2015).

    Article  Google Scholar 

  17. Z. Cui and X. Bai, Ultrasonic-assisted synthesis of two dimensional coral-like Pd nanosheets supported on reduced graphene oxide for enhanced electrocatalytic performance. Ultrason. Sonochem. 70, 105309 (2021).

    Article  CAS  Google Scholar 

  18. K. Bramhaiah and N.S. John, Hybrid films of reduced graphene oxide with noble metal nanoparticles generated at a liquid/liquid interface for applications in catalysis. RSC Adv. 3, 7765 (2013).

    Article  CAS  Google Scholar 

  19. T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, and J.H. Lee, Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57, 1061 (2012).

    Article  CAS  Google Scholar 

  20. R. Kumar, Doping and stress induced raman shifts in Pd-decorated CVD grown graphene. ECS J. Solid State Sci. Technol. 10, 061002 (2021).

    Article  CAS  Google Scholar 

  21. S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, and M. Setkiewicz, Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors (Basel). 16, 103 (2016).

    Article  Google Scholar 

  22. L.J. Wang, J. Zhang, X. Zhao, L.L. Xu, Z.Y. Lyu, M. Lai, and W. Chen, Palladium nanoparticle functionalized graphene nanosheets for Li–O2 batteries: enhanced performance by tailoring the morphology of the discharge product. RSC Adv. 5, 73451 (2015).

    Article  CAS  Google Scholar 

  23. S. Muralikrishna, K. Sureshkumar, T.S. Varley, D.H. Nagaraju, and T. Ramakrishnappa, In situ reduction and functionalization of graphene oxide with L-cysteine for simultaneous electrochemical determination of cadmium (II), lead (II), copper (II), and mercury (II) ions. Anal. Methods 6, 8698 (2014).

    Article  CAS  Google Scholar 

  24. Y. Zheng, Q. Qiao, J. Wang, X. Li, and J. Jian, Gas sensing behavior of palladium oxide for carbon monoxide at low working temperature. Sens. Actuators B Chem. 212, 256 (2015).

    Article  CAS  Google Scholar 

  25. S. Zhu, Y. Liu, G. Wu, L. Fei, S. Zhang, Y. Hu, Z. Yan, Y. Wang, H. Gu, and W. Chen, Mechanism study on extraordinary room-temperature CO sensing capabilities of Pd-SnO2 composite nanoceramics. Sens. Actuators B Chem. 285, 49 (2019).

    Article  CAS  Google Scholar 

  26. S.W. Choi and S.S. Kim, Room temperature CO sensing of selectively grown networked ZnO nanowires by Pd nanodot functionalization. Sens. Actuators B Chem. 168, 8 (2012).

    Article  CAS  Google Scholar 

  27. Q. Hu, S. Liu, and Y. Lian, Sensors for carbon monoxide based on Pd/SnO2/CNT nanocomposites. Phys. Status Solidi A 211, 2729 (2014).

    Article  CAS  Google Scholar 

  28. H.Y. Lai and C.H. Chen, Highly sensitive room-temperature CO gas sensors: Pt and Pd nanoparticle-decorated In2O3 flower-like nanobundles. J. Mater. Chem. 22, 13204 (2012).

    Article  CAS  Google Scholar 

  29. M. Shojaee, S. Nasresfahani, and M.H. Sheikhi, Hydrothermally synthesized Pd-loaded SnO2/partially reduced graphene oxide nanocomposite for effective detection of carbon monoxide at room temperature. Sens. Actuators B Chem. 254, 457 (2018).

    Article  CAS  Google Scholar 

  30. M. Wang, B. Sun, Z. Jiang, Y. Liu, X. Wang, Z. Tang, Y. Wang, and W. Chen, Preparation and extraordinary room-temperature co sensing capabilities of Pd–SnO2 composite nanoceramics. J. Nanosci. Nanotechnol. 18, 4176 (2018).

    Article  CAS  Google Scholar 

  31. A.K. Basu, P.S. Chauhan, M. Awasthi, and S. Bhattacharya, α-Fe2O3 loaded rGO nanosheets based fast response/recovery CO gas sensor at room temperature. Appl. Surf. Sci. 465, 56 (2019).

    Article  CAS  Google Scholar 

  32. S.K. Hazra and S. Basu, Graphene-oxide nano composites for chemical sensor applications. C 2, 12 (2016).

    Google Scholar 

  33. U. Latif and F.L. Dickert, Graphene hybrid materials in gas sensing applications. Sensors 15, 30504 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank NIT, Hamirpur, for Raman and IIT, Mandi, for XPS studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Bir Barman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, A., Barman, P.B. & Hazra, S.K. Response of rGO and Pd-Decorated rGO to Carbon Monoxide Gas. J. Electron. Mater. 52, 1999–2011 (2023). https://doi.org/10.1007/s11664-022-10161-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10161-4

Keywords

Navigation