Skip to main content
Log in

Equi-Axed Grain Formation in Electrodeposited Sn-Bi

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sn is widely used as a coating in the electronics industry because it provides excellent solderability, ductility, electrical conductivity, and corrosion resistance. However, Sn whiskers have been observed to grow spontaneously from Sn electrodeposits and are known to cause short circuits in fine-pitched pre-tinned electrical components. We report here a deposition strategy that produces an equi-axed and size-tunable grain structure in Sn-Bi alloys electrodeposited from a commercial bright Sn electrolyte. An equi-axed grain structure should allow a more uniform creep to relieve compressive stress with no localized surface disturbance. The standard potential for Bi is about 0.45 V more positive than Sn. Pulsed deposition can selectively turn on and off the Sn deposition reaction. During the off cycle, a displacement reaction between metallic Sn on the electrode surface and Bi3+ in solution selectively dissolves Sn and deposits Bi, effectively terminating the growth from the previous cycle and forcing the Sn to nucleate a new grain on the Bi-enriched surface. The grain size is tunable by varying the pulsing conditions, and an equi-axed structure can be obtained with as little as 3 at.% Bi. This surface enrichment of Bi by potential modulation is similar to that which occurs naturally in Sn-Pb, and provides an avenue for breaking up the columnar grain structure inherent to pure Sn, thus providing an additional diffusion path for Sn that may prevent whisker growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Arnold, Plating 53, 96 (1966)

    CAS  Google Scholar 

  2. G.T. Galyon, IEEE Trans. Electron. Packag. Manuf. 28, 94 (2005)

    Article  CAS  Google Scholar 

  3. J.W. Osenbach, J.M. DeLucca, B.D. Potteiger, A. Amin, F.A. Baiocchi, J. Mater. Sci.: Mater. Electron. 18, 283 (2007)

    Article  CAS  Google Scholar 

  4. R.M. Fisher, L.S. Darken, K.G. Carroll, Acta Metall. 2, 368 (1954)

    Article  CAS  Google Scholar 

  5. W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.-W. Moon, M.E. Williams, G.R. Stafford, Acta Mater. 53, 5033 (2005)

    Article  CAS  Google Scholar 

  6. W. Zhang, F. Schwager, J. Electrochem. Soc. 153, C337 (2006)

    Article  CAS  Google Scholar 

  7. C.S. Chen, C.C. Wan, Y.Y. Wang, Trans. Inst. Met. Finish. 76, 54 (1998)

    CAS  Google Scholar 

  8. J. Horkans, I.C.H. Chang, P.C. Andricacos, IBM J. Res. Dev. 37, 97 (1993)

    Article  CAS  Google Scholar 

  9. A.M. Pesco, H.Y. Cheh, J. Electrochem. Soc. 135, 1722 (1988)

    Article  CAS  Google Scholar 

  10. J.-H. Kim, M.-S. Suh, H.-S. Kwon, Surf. Coat. Technol. 56, 56 (1996)

    Article  Google Scholar 

  11. I. Petersson, E. Ahlberg, J. Electroanal. Chem. 485, 166 (2000)

    Article  CAS  Google Scholar 

  12. I. Petersson, E. Ahlberg, J. Electroanal. Chem. 485, 178 (2000)

    Article  CAS  Google Scholar 

  13. F. Ogburn, H. Brown, Plat. Surf. Finish. 75, 58 (1988)

    CAS  Google Scholar 

  14. M. Jordon, Trans. Inst. Met. Finish. 75, 149 (1997)

    Google Scholar 

  15. T.B. Massalski, ed. Binary Alloy Phase Diagrams. 1986, Metals Park, OH, American Society of Metals

    Google Scholar 

  16. M.-S. Suh, C.-J. Park, H.-S. Kwon, Surf. Coat. Tech. 200, 3527 (2006)

    Article  CAS  Google Scholar 

  17. A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (New York, NY, 1980), p.␣288

  18. M.H. Mueller, W.P. Chernock, P.A. Beck, Trans. AIME 212, 39 (1958)

    Google Scholar 

  19. U.F. Kocks, C.N. Tome, and H.R. Wenk, eds., Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties (Cambridge University Press, 1998)

  20. E. Sandnes, M.E. Williams, U. Bertocci, M.D. Vaudin, G.R. Stafford, Electrochim. Acta 52, 6221 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical contributions of Kil-Won Moon, William Boettinger, and David Kelley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.R. Stafford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandnes, E., Williams, M., Vaudin, M. et al. Equi-Axed Grain Formation in Electrodeposited Sn-Bi. J. Electron. Mater. 37, 490–497 (2008). https://doi.org/10.1007/s11664-007-0369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-007-0369-0

Keywords

Navigation