Skip to main content
Log in

Plasmonic Applications of Gold-Copper Bimetallic Alloy Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonic metal nanoparticles due to their characteristic localized surface plasmon resonance (LSPR) in the optical region of the electromagnetic wave are of much interest right from the medieval ages. Herein, we present a robust single-step synthetic protocol for the synthesis of Au and Cu alloy nanoparticles, which are typically used in various catalytic and sensing applications. For alloy formation, co-reduction of Au and Cu salts was used in four different Au/Cu mass ratios (1:1, 1:2, 1:3, and 1:4) yielding “marigold” like nanostructures. The formation of the desired alloy composition was confirmed from their optical spectra giving an LSPR peak among the specific peak nature of Au and Cu and also, from the XRD pattern, displaying diffraction peaks corresponding to Au and Cu only, but not the copper oxides. Additionally, the effect of plasmonic damping due to inter-band transition and polydispersity in the formed alloys was also discussed. Moreover, their optical spectra confirm a broadband bathochromic shifted LSPR peak alongside a lowering intensity with the surge in Cu concentration. For the respective compositions of the alloy nanoparticles, optical spectra (compared with experimental data) and the electric field enhancement data were also simulated using the MATLAB-based boundary element method to investigate their application in antennas for SERS, SEIRA, etc. Furthermore, these AuCu nanoalloys were utilized in crystal violet dye degradation, which provides an enhanced catalytic character in comparison with that of pure Au nanoparticles. Subsequently, the turnover frequency of the degradation process provides the superlative AuCu composition. A similar enhanced nature was likewise obtained for simulated refractive index sensitivity for n = 1−1.5, establishing not only the inherent cost-effectiveness and single-step procedure of our versatile synthetic protocol, but also the formation of robust alloy with different combinations of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data and code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Turino M, Pazos-Perez N, Guerrini L, Alvarez-Puebla RA (2022) Positively-charged plasmonic nanostructures for SERS sensing applications. RSC Adv. https://doi.org/10.1039/D1RA07959J

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kim J, Sim K, Cha S, Oh J-W, Nam J-M (2021) Single-particle analysis on plasmonic nanogap systems for quantitative SERS. J Raman Spectrosc. https://doi.org/10.1002/jrs.6030

    Article  Google Scholar 

  3. Janneh M (2022) (INVITED) Surface enhanced infrared absorption spectroscopy using plasmonic nanostructures: alternative ultrasensitive on-chip biosensor technique. Results in Optics. https://doi.org/10.1016/j.rio.2021.100201

    Article  Google Scholar 

  4. Tanaka T, Yano T-A, Kato R (2022) Nanostructure-enhanced infrared spectroscopy. Nanophotonics. https://doi.org/10.1515/nanoph-2021-0661

    Article  Google Scholar 

  5. Li C, Jin Y (2021) Shell-isolated plasmonic nanostructures for biosensing, catalysis, and advanced nanoelectronics. Adv Funct Mater. https://doi.org/10.1002/adfm.202008031

    PubMed  PubMed Central  Google Scholar 

  6. da Silva AGM, Rodrigues TS, Wang J, Camargo PHC (2022) Plasmonic catalysis with designer nanoparticles. Chem Commun. https://doi.org/10.1039/D1CC03779J

    Google Scholar 

  7. Amirjani A, Rahbarimehr E (2021) Recent advances in functionalization of plasmonic nanostructures for optical sensing. Microchim Acta. https://doi.org/10.1007/s00604-021-04714-3

    Article  Google Scholar 

  8. Pathania P, Shishodia MS (2021) Fano resonance-based blood plasma monitoring and sensing using plasmonic nanomatryoshka. Plasmonics. https://doi.org/10.1007/s11468-020-01343-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. Linic S, Chavez S, Elias R (2021) Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat Mater. https://doi.org/10.1038/s41563-020-00858-4

    Article  PubMed  Google Scholar 

  10. Kakkanattu A, Eerqing N, Ghamari S, Vollmer F (2021) Review of optical sensing and manipulation of chiral molecules and nanostructures with the focus on plasmonic enhancements [Invited]. Opt Express. https://doi.org/10.1364/OE.421839

    Article  PubMed  Google Scholar 

  11. Kim J-M, Lee C, Lee Y, Lee J, Park S-J, Park S et al (2021) Synthesis, assembly, optical properties, and sensing applications of plasmonic gap nanostructures. Adv Mater. https://doi.org/10.1002/adma.202006966

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kedia A, Kumar PS (2013) Controlled reshaping and plasmon tuning mechanism of gold nanostars. J Mater Chem C. https://doi.org/10.1039/C3TC30574K

    Article  Google Scholar 

  13. Kedia A, Kumar PS (2012) Solvent-adaptable poly(vinylpyrrolidone) binding induced anisotropic shape control of gold nanostructures. J Phys Chem C. https://doi.org/10.1021/jp306952d

    Article  Google Scholar 

  14. Zhang R, Khalizov A, Wang L, Hu M, Xu W (2012) Nucleation and growth of nanoparticles in the atmosphere. Chem Rev. https://doi.org/10.1021/cr2001756

    Article  PubMed  Google Scholar 

  15. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem. https://doi.org/10.1039/A805753B

    Article  Google Scholar 

  16. Eom N, Messing ME, Johansson J, Deppert K (2021) General trends in core–shell preferences for bimetallic nanoparticles. ACS Nano. https://doi.org/10.1021/acsnano.1c01500

    Article  PubMed  PubMed Central  Google Scholar 

  17. Berta L, Coman N-A, Rusu A, Tanase C (2021) A review on plant-mediated synthesis of bimetallic nanoparticles, characterisation and their biological applications. Materials. https://doi.org/10.3390/ma14247677

    Article  PubMed  PubMed Central  Google Scholar 

  18. Song Q, Liu Y, Zhang P, Feng W, Shi S, Zhou N et al (2022) Au–Cu bimetallic nanostructures for photothermal antibacterial and wound healing promotion. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.2c02152

    Google Scholar 

  19. Gawande MB, Goswami A, Felpin F-X, Asefa T, Huang X, Silva R et al (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev. https://doi.org/10.1021/acs.chemrev.5b00482

    Article  PubMed  Google Scholar 

  20. Qiao Z, Feng H, Zhou J (2014) Molecular dynamics simulations on the melting of gold nanoparticles. Phase Transitions. https://doi.org/10.1080/01411594.2013.798410

    Article  Google Scholar 

  21. Guisbiers G, Mejia-Rosales S, Khanal S, Ruiz-Zepeda F, Whetten RL, José-Yacaman M (2014) Gold–copper nano-alloy, “Tumbaga”, in the era of nano: phase diagram and segregation. Nano Lett. https://doi.org/10.1021/nl503584q

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang J, Xiang Y, Li J, Kong Q, Zhai H, Xu R et al (2021) A novel electrochemiluminescence aptasensor based on copper-gold bimetallic nanoparticles and its applications. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2021.113601

    Article  PubMed  PubMed Central  Google Scholar 

  23. Van XT, Trinh LT, Van Pham H, Nguyen MTT (2022) Tunable plasmonic properties of bimetallic Au-Cu nanorods for SERS-based sensing application. J Electron Mater. https://doi.org/10.1007/s11664-022-09455-4

    Article  Google Scholar 

  24. Nguyen MT, Zhang H, Deng L, Tokunaga T, Yonezawa T (2017) Au/Cu bimetallic nanoparticles via double-target sputtering onto a liquid polymer. Langmuir. https://doi.org/10.1021/acs.langmuir.7b03194

    Article  PubMed  Google Scholar 

  25. Wei R, Tang N, Jiang L, Yang J, Guo J, Yuan X et al (2022) Bimetallic nanoparticles meet polymeric carbon nitride: fabrications, catalytic applications and perspectives. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2022.214500

    Article  Google Scholar 

  26. Kim D, Resasco J, Yu Y, Asiri AM, Yang P (2014) Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat Commun. https://doi.org/10.1038/ncomms5948

    Article  PubMed  Google Scholar 

  27. Verma M, Kedia A, Kumar PS (2016) Gold-copper alloy “nano-dumplings” with tunable compositions and plasmonic properties. AIP Conf Proc doi 10(1063/1):4946376

    Google Scholar 

  28. Hohenester U, Trügler A (2012) MNPBEM – a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput Phys Commun. https://doi.org/10.1016/j.cpc.2011.09.009

    Article  Google Scholar 

  29. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B. https://doi.org/10.1103/PhysRevB.6.4370

    Article  Google Scholar 

  30. Motl NE, Ewusi-Annan E, Sines IT, Jensen L, Schaak RE (2010) Au−Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory. J Phys Chem C. https://doi.org/10.1021/jp107637j

    Article  Google Scholar 

  31. Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B. https://doi.org/10.1021/jp062536y

    PubMed  PubMed Central  Google Scholar 

  32. Su Y-H, Wang W-L (2013) Surface plasmon resonance of Au-Cu bimetallic nanoparticles predicted by a quasi-chemical model. Nanoscale Res Lett. https://doi.org/10.1186/1556-276X-8-408

    Article  PubMed  PubMed Central  Google Scholar 

  33. Martienssen W, Warlimont H (2005) Springer handbook of condensed matter and materials data. Springer

    Book  Google Scholar 

  34. Mattei G, Battaglin G, Cattaruzza E, Maurizio C, Mazzoldi P, Sada C et al (2007) Synthesis by co-sputtering of Au–Cu alloy nanoclusters in silica. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2006.10.037

    Article  Google Scholar 

  35. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. https://doi.org/10.1016/j.jare.2010.02.002

    Article  Google Scholar 

  36. Dang MC, Dung Dang TM, Fribourg-Blanc E (2013) Inkjet printing technology and conductive inks synthesis for microfabrication techniques. Adv Nat Sci: Nanosci Nanotechnol. https://doi.org/10.1088/2043-6262/4/1/015009

    Google Scholar 

  37. Usman MS, Ibrahim NA, Shameli K, Zainuddin N, Yunus WMZW (2012) Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods. Molecules. https://doi.org/10.3390/molecules171214928

    Article  PubMed  PubMed Central  Google Scholar 

  38. Manikas AC, Papa A, Causa F, Romeo G, Netti PA (2015) Bimetallic Au/Ag nanoparticle loading on PNIPAAm–VAA–CS8 thermoresponsive hydrogel surfaces using ss-DNA coupling, and their SERS efficiency. RSC Adv. https://doi.org/10.1039/C4RA13022G

    Article  Google Scholar 

  39. Dubkov SV, Savitskiy AI, Trifonov AY, Yeritsyan GS, Shaman YP, Kitsyuk EP et al (2020) SERS in red spectrum region through array of Ag–Cu composite nanoparticles formed by vacuum-thermal evaporation. Optical Materials: X. https://doi.org/10.1016/j.omx.2020.100055

    Article  Google Scholar 

  40. Dahiya A, Kumar PS (2022) Electron energy-loss spectroscopy investigation of multipolar behavior in Al nanostructure as a function of surface coating with PVP and oxidation. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2022.103668

    Article  Google Scholar 

  41. Oh H, Kim M, Park Y, Ryu S, Song H (2021) Abnormal hypsochromic shifts of surface plasmon scattering by atomic ordering in gold–copper intermetallic nanoparticles. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.1c06555

    Article  Google Scholar 

  42. Bosman M, Ye E, Tan SF, Nijhuis CA, Yang JKW, Marty R et al (2013) Surface plasmon damping quantified with an electron nanoprobe. Sci Rep. https://doi.org/10.1038/srep01312

    Article  PubMed  PubMed Central  Google Scholar 

  43. Colas des Francs G, Derom S, Vincent R, Bouhelier A, Dereux A. (2012) Mie plasmons: modes volumes, quality factors, and coupling strengths (Purcell factor) to a dipolar emitter. Int J Opt. https://doi.org/10.1155/2012/175162

    Google Scholar 

  44. Wang H, Tam F, Grady NK, Halas NJ (2005) Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. J Phys Chem B. https://doi.org/10.1021/jp053863t

    PubMed  Google Scholar 

  45. Borah R, Verbruggen SW (2020) Silver–gold bimetallic alloy versus core–shell nanoparticles: implications for plasmonic enhancement and photothermal applications. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.0c02630

    Article  Google Scholar 

  46. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev. https://doi.org/10.1021/cr400544s

    Article  PubMed  Google Scholar 

  47. Borah R, Verbruggen SW (2022) Effect of size distribution, skewness and roughness on the optical properties of colloidal plasmonic nanoparticles. Colloids Surf, A. https://doi.org/10.1016/j.colsurfa.2022.128521

    Article  Google Scholar 

  48. Le Ru EC, Etchegoin PG (2009) Chapter 4 - SERS enhancement factors and related topics. In: Le Ru EC, Etchegoin PG (eds) Principles of surface-enhanced raman spectroscopy. Elsevier, Amsterdam, pp 185–264

    Google Scholar 

  49. Rodrigues TS, da Silva AGM, Camargo PHC (2019) Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities. J Mat Chem A. https://doi.org/10.1039/C9TA00074G

    Article  Google Scholar 

  50. Kucherik A, Kutrovskaya S, Osipov A, Gerke M, Chestnov I, Arakelian S et al (2019) Nano-antennas based on silicon-gold nanostructures. Sci Rep. https://doi.org/10.1038/s41598-018-36851-w

    Article  PubMed  PubMed Central  Google Scholar 

  51. Verma M, Kedia A, Newmai MB, Kumar PS (2016) Differential role of PVP on the synthesis of plasmonic gold nanostructures and their catalytic and SERS properties. RSC Adv. https://doi.org/10.1039/C6RA18345J

    Article  Google Scholar 

  52. Bracey CL, Ellis PR, Hutchings GJ (2009) Application of copper–gold alloys in catalysis: current status and future perspectives. Chem Soc Rev. https://doi.org/10.1039/B817729P

    Article  PubMed  Google Scholar 

  53. Latif ur R, Shah A, Qureshi R, Khan SB, Asiri AM, Shah A-u-HA, et al (2015) Spectroscopic analysis of Au-Cu alloy nanoparticles of various compositions synthesized by a chemical reduction method. Adv Mater Sci Eng. https://doi.org/10.1155/2015/638629

    Google Scholar 

  54. Banerjee S, Loza K, Meyer-Zaika W, Prymak O, Epple M (2014) Structural evolution of silver nanoparticles during wet-chemical synthesis. Chem Mater. https://doi.org/10.1021/cm4025342

    Article  Google Scholar 

  55. Okuda S, Kobiyama M, Inami T, Takamura S (2001) Thermal stability of nanocrystalline gold and copper prepared by gas deposition method. Scripta Mater. https://doi.org/10.1016/S1359-6462(01)00825-9

    Article  Google Scholar 

  56. Zhan W, Wang J, Wang H, Zhang J, Liu X, Zhang P et al (2017) Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation. J Am Chem Soc. https://doi.org/10.1021/jacs.7b01784

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu C, Im SH, Yu T (2021) Synthesis of Au–Cu alloy nanoparticles as peroxidase mimetics for H2O2 and glucose colorimetric detection. Catalysts. https://doi.org/10.3390/catal11030343

    Google Scholar 

  58. Kim M-J, Na H-J, Lee KC, Yoo EA, Lee M (2003) Preparation and characterization of Au–Ag and Au–Cu alloy nanoparticles in chloroform. J Mater Chem. https://doi.org/10.1039/B304006M

    Article  Google Scholar 

  59. Li A, Qiao X, Liu K, Bai W, Wang T (2022) Hollow metal organic framework improves the sensitivity and anti-interference of the detection of exhaled volatile organic compounds. Adv Funct Mater. https://doi.org/10.1002/adfm.202202805

    PubMed  PubMed Central  Google Scholar 

  60. Debu DT, Yan Q, Darweesh AA, Benamara M, Salamo G (2020) Broad range electric field enhancement of a plasmonic nanosphere heterodimer. Opt Mater Express. https://doi.org/10.1364/OME.396449

    Article  Google Scholar 

  61. Khaleque A, Mironov EG, Osório JH, Li Z, Cordeiro CMB, Liu L et al (2017) Integration of bow-tie plasmonic nano-antennas on tapered fibers. Opt Express. https://doi.org/10.1364/OE.25.008986

    Article  PubMed  Google Scholar 

  62. Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Photonics. https://doi.org/10.1364/AOP.1.000438

    Article  Google Scholar 

  63. Geng X, Xie X, Liang Y, Li Z, Yang K, Tao J et al (2021) Facile fabrication of a novel copper nanozyme for efficient dye degradation. ACS Omega. https://doi.org/10.1021/acsomega.0c05925

    Article  PubMed  PubMed Central  Google Scholar 

  64. León ER, Rodríguez EL, Beas CR, Plascencia-Villa G, Palomares RAI (2016) Study of methylene blue degradation by gold nanoparticles synthesized within natural zeolites. J Nanomater. https://doi.org/10.1155/2016/9541683

    Article  Google Scholar 

  65. Ghosh S, Roy S, Naskar J, Kole RK (2020) Process optimization for biosynthesis of mono and bimetallic alloy nanoparticle catalysts for degradation of dyes in individual and ternary mixture. Sci Rep. https://doi.org/10.1038/s41598-019-57097-0

    PubMed  PubMed Central  Google Scholar 

  66. Sahoo A, Patra S (2018) A combined process for the degradation of azo-dyes and efficient removal of aromatic amines using porous silicon supported porous ruthenium nanocatalyst. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.8b01152

    Article  Google Scholar 

  67. Verma M, Newmai MB, Senthil KP (2017) Synergistic effect of Au–Ag nano-alloying: intense SEIRA and enhanced catalysis. Dalton Trans. https://doi.org/10.1039/C7DT02130E

    Article  PubMed  Google Scholar 

  68. Maley AM, Arbiser JL (2013) Gentian violet: a 19th century drug re-emerges in the 21st century. Exp Dermatol. https://doi.org/10.1111/exd.12257

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gautam A, Kshirsagar A, Biswas R, Banerjee S, Khanna PK (2016) Photodegradation of organic dyes based on anatase and rutile TiO2 nanoparticles. RSC Adv. https://doi.org/10.1039/C5RA20861K

    Article  Google Scholar 

  70. Vinosel VM, Anand S, Janifer MA, Pauline S, Dhanavel S, Praveena P et al (2019) Enhanced photocatalytic activity of Fe3O4/SnO2 magnetic nanocomposite for the degradation of organic dye. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-019-01300-5

    Google Scholar 

  71. Kozuch S, Martin JML (2012) “Turning Over” definitions in catalytic cycles. ACS Catal. https://doi.org/10.1021/cs3005264

    Article  Google Scholar 

  72. Kgatle M, Sikhwivhilu K, Ndlovu G, Moloto N (2021) Degradation kinetics of methyl orange dye in water using trimetallic Fe/Cu/Ag nanoparticles. Catalysts. https://doi.org/10.3390/catal11040428

    Article  Google Scholar 

  73. Tamta S, Dahiya A, Kumar PS (2022) Modified Stöber synthesis of SiO2@Ag nanocomposites and their enhanced refractive index sensing applications. Physica B. https://doi.org/10.1016/j.physb.2022.413971

    Article  Google Scholar 

  74. Borah R, Smets J, Ninakanti R, Tietze ML, Ameloot R, Chigrin DN et al (2022) Self-assembled ligand-capped plasmonic Au nanoparticle films in the Kretschmann configuration for sensing of volatile organic compounds. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.2c02524

    Article  Google Scholar 

  75. Kameoka S, Tsai AP (2008) CO oxidation over a fine porous gold catalyst fabricated by selective leaching from an ordered AuCu3 intermetallic compound. Catal Lett. https://doi.org/10.1007/s10562-007-9344-x

    Article  Google Scholar 

  76. Llorca J, Domínguez M, Ledesma C, Chimentão RJ, Medina F, Sueiras J et al (2008) Propene epoxidation over TiO2-supported Au–Cu alloy catalysts prepared from thiol-capped nanoparticles. J Catal. https://doi.org/10.1016/j.jcat.2008.06.010

    Article  Google Scholar 

  77. Woźniak-Budych MJ, Langer K, Peplińska B, Przysiecka Ł, Jarek M, Jarzębski M et al (2016) Copper-gold nanoparticles: fabrication, characteristic and application as drug carriers. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2016.05.036

    Article  Google Scholar 

  78. Ge K, Hu Y, Li G (2022) Fabrication of branched gold copper nanoalloy doped mesoporous graphitic carbon nitride hybrid membrane for surface-enhanced Raman spectroscopy analysis of carcinogens. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2022.128742

    Article  PubMed  Google Scholar 

  79. Kumar G, Sharma GD, Chen F-C (2021) Localized surface plasmon resonance of Au-Cu alloy nanoparticles enhances the performance of polymer photovoltaic devices for outdoor and indoor applications. Opt Mater Express. https://doi.org/10.1364/OME.418117

    Article  Google Scholar 

Download references

Acknowledgements

AD acknowledges the Council of Scientific & Industrial Research (CSIR), Govt. of India, for the NET-SRF fellowship. The authors are thankful to the University of Delhi for the infrastructure to carry out the research work. The authors are grateful to IoE and DU for research funding (IoE/2021/12/FRP).

Author information

Authors and Affiliations

Authors

Contributions

All authors together design the problem. AD synthesized all the samples. AD simulated all results using MATLAB. AD wrote and revised the manuscript with an editorial contribution from MV and PSK.

Corresponding author

Correspondence to Pandian Senthil Kumar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16206 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahiya, A., Verma, M. & Kumar, P.S. Plasmonic Applications of Gold-Copper Bimetallic Alloy Nanoparticles. Plasmonics 17, 2173–2186 (2022). https://doi.org/10.1007/s11468-022-01704-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01704-w

Keywords

Navigation