Skip to main content
Log in

Femtosecond laser 3D fabrication of whispering-gallery-mode microcavities

  • Review
  • Special Topic: Microcavity Photonics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Whispering-gallery-mode (WGM) microcavities with high-quality factors and small volumes have attracted intense interests in the past decades because of their potential applications in various research fields such as quantum information, sensing, and optoelectronics. This leads to rapid advance in a variety of processing technologies that can create high-quality WGM micro- cavities. Due to the unique characteristics of femtosecond laser pulses with high peak intensity and ultrashort pulse duration, femtosecond laser shows the ability to carry out ultrahigh precision micromachining of a variety of transparent materials through nonlinear multiphoton absorption and tunneling ionization. This review paper describes the basic principle of femtosecond laser direct writing, and presents an overview of recent progress concerning femtosecond laser three-dimensional (3D) fabrications of optical WGM microcavities, which include the advances in the fabrications of passive and active WGMs microcavities in a variety of materials such as polymer, glass and crystals, as well as in processing the integrated WGM-microcavity device. Lastly, a summary of this dynamic field with a future perspective is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. He L, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers. Laser Photon Rev, 2013; 7: 60–82

    Article  Google Scholar 

  2. Hu Y W, Xiao Y F, Liu Y C, et al. Optomechanical sensing with on-chip microcavities. Front Phys, 2013; 8: 475–490

    Article  Google Scholar 

  3. Shao L, Jiang X, Yu X, et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv Mater, 2013; 25: 5616–5620

    Article  Google Scholar 

  4. Özdemir Ş K, Zhu J, Yang X, et al. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering- gallery Raman microlaser. Proc Natl Acad Sci USA, 2014, 111: E3836E3844

    Article  Google Scholar 

  5. Schwelb O. Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filtersA tutorial overview. J Lightwave Technol, 2004; 22: 1380–1394

    Article  ADS  Google Scholar 

  6. Vahala K J. Optical Microcavities. Singapore: World Scientific, 2004

    Google Scholar 

  7. Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010; 5: 435–448

    Article  Google Scholar 

  8. Sugioka K, Cheng Y. Ultrafast lasersreliable tools for advanced materials processing. Light Sci Appl, 2014, 3: e149

    Article  Google Scholar 

  9. Liao Y, Xu J, Cheng Y, et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt Lett, 2008; 33: 2281–2283

    Article  ADS  Google Scholar 

  10. Zhan X P, Ku J F, Xu Y, et al. Unidirectional lasing from a spiral- shaped microcavity of dye-doped polymers fabricated by femtosecond laser direct writing. IEEE Photon Tech Lett, 2015; 27: 311–314

    Article  ADS  Google Scholar 

  11. Sun Y L, Dong W, Niu L G, et al. Soft micro-optics from protein fabricated by femtosecond laser direct writing. Light Sci Appl, 2014, 3: e129

    Article  Google Scholar 

  12. Zhu Z Q, Yan Z D, Zhan P, et al. Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation. Sci China-Phys Mech Atron, 2013; 56: 1806–1809

    Article  ADS  Google Scholar 

  13. Tan W, Yang Y, Si J, et al. Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass. J Appl Phys, 2010, 107: 043104

    Article  ADS  Google Scholar 

  14. Tan W, Zhan P, Si J H, et al. Sharpness-enhanced ultrafast imaging by using a biased optical Kerr gate. Opt Exp, 2014, 22: 2810028108

    ADS  Google Scholar 

  15. Xu H L, Cheng Y, Chin S L, et al. Femtosecond laser ionization and fragmentation for environmental sensing. Laser Photon Rev, 2015; 9: 275–293

    Article  MATH  Google Scholar 

  16. Li H L, Xu H L, Yang B, et al. Sensing combustion intermediates by femtosecond filament excitation. Opt Lett, 2013; 38: 1250–1252

    Article  ADS  Google Scholar 

  17. Chu W, Li H, Ni J, et al. Lasing action induced by femtosecond laser filamentation in ethanol flame for combustion diagnosis. Appl Phys Lett, 2014, 104: 091106

    Article  ADS  Google Scholar 

  18. Si J, Hirao K. Phase-matched second-harmonic generation in crosslinking polyurethane films by thermal-assisted optical poling. Appl Phys Lett, 2007, 91: 91105

    Article  Google Scholar 

  19. Yao J P, Zeng B, Xu H L, et al. High-brightness switchable multiwavelength remote laser in air. Phys Rev A, 2011, 84: 051802

    Article  ADS  Google Scholar 

  20. Chu W, Zeng B, Yao J, et al. Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses. Europhys Lett, 2012, 97: 64004

    Article  ADS  Google Scholar 

  21. Wang S F, Gong Q H. Progress in femtochemistry and femtobiology. Sci China-Phys Mech Atron, 2011; 54: 2103–2108

    Article  ADS  Google Scholar 

  22. Yang B S, Zhang L, Xu H L, et al. Fragmentation of hydrocarbon molecules in intense laser fields studied by coincidence momentum imaging: A review. Chin J Phys, 2014; 52: 652–674

    Google Scholar 

  23. Wu D, Chen Q, Niu L, et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab Chip, 2009; 9: 2391–2394

    Article  Google Scholar 

  24. Wang J, He Y, Xia H, et al. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab Chip, 2010; 10: 1993–1996

    Article  Google Scholar 

  25. Jin Y, Feng J, Zhang X, et al. Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode. Adv Mater, 2012; 24: 1187–1191

    Article  Google Scholar 

  26. Bi Y, Feng J, Li Y, et al. Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity. Adv Mater, 2013; 25: 6969–6974

    Article  Google Scholar 

  27. Zhang Y, Guo L, Wei S, et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 2010; 5: 15–20

    Article  Google Scholar 

  28. Xia H, Wang J, Tian Y, et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Adv Mater, 2010; 22: 3204–3207

    Article  Google Scholar 

  29. Guo L, Xia H, Fan H, et al. Femtosecond laser direct patterning of sensing materials towards flexible integration of micronanosensors. Opt Lett, 2010; 35: 1695–1697

    Article  ADS  Google Scholar 

  30. Wu D, Chen Q, Yao J, et al. A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting. Appl Phys Lett, 2010, 96: 053704

    Article  ADS  Google Scholar 

  31. Wu D, Wang J, Wu S, et al. Three-level biomimetic rice leaf surfaces with controllable anisotropic sliding. Adv Funct Mater, 2011; 21: 2927–2932

    Article  Google Scholar 

  32. Liu D, Sun Y, Dong W, et al. Dynamic laser prototyping for biomimetic nanofabrication. Laser Photon Rev, 2014; 8: 882–888

    Article  MathSciNet  Google Scholar 

  33. Chen Q, Wu D, Niu L, et al. Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization. Appl Phys Lett, 2007, 91: 171105

    Article  ADS  Google Scholar 

  34. Wu D, Chen Q, Niu L, et al. 100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision. IEEE Photon Technol Lett, 2009; 21: 1535–1537

    Article  ADS  Google Scholar 

  35. Sun Y, Dong W, Yang R, et al. Dynamically tunable protein microlenses. Angew Chem Int Ed, 2012; 51: 1558–1562

    Article  Google Scholar 

  36. Grigorescu A E, Hagen C W. Resists for sub-20-nm electron beam lithography with a focus on HSQ: State of the art. Nanotechnology, 2009, 20: 292001

    Article  Google Scholar 

  37. Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices micromachines can be created with higher resolution using two-photon absorption. Nature, 2001; 412: 697–698

    Article  ADS  Google Scholar 

  38. Liu Z P, Li Y, Xiao Y F, et al. Direct laser writing of whispering gallery microcavities by two-photon polymerization. Appl Phys Lett, 2010, 97: 211105

    Article  ADS  Google Scholar 

  39. Grossmann T, Schleede S, Hauser M, et al. Direct laser writing for active and passive high-Q polymer microdisks on silicon. Opt Exp, 2011, 19: 1145111456

    ADS  Google Scholar 

  40. Lin J, Yu S, Ma Y, et al. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Opt Exp, 2012, 20: 1021210217

    Google Scholar 

  41. Sugioka K, Cheng Y. Femtosecond laser processing for optofluidic fabrication. Lab Chip, 2012; 12: 3576–3589

    Article  Google Scholar 

  42. Lin J, Xu Y, Tang J, et al. Fabrication of three-dimensional microdisk resonators in calcium fluoride by femtosecond laser micromachining. Appl Phys A, 2014; 116: 2019–2013

    Article  ADS  Google Scholar 

  43. Lin J, Xu Y, Fang Z, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci Rep, 2015, 5: 8072

    Article  ADS  Google Scholar 

  44. Tada K, Gohoon G A, Kieu K, et al. Fabrication of high-Q microresonators using femtosecond laser micromachining. IEEE Photon Technol Lett, 2013; 25: 430–433

    Article  ADS  Google Scholar 

  45. Levi A F J, Slusher R E, McCall S L, et al. Directional light coupling from microdisk lasers. Appl Phys Lett, 1993; 62: 561–563

    Article  ADS  Google Scholar 

  46. Nöckel J U, Stone A D. Ray and wave chaos in asymmetric resonant optical cavities. Nature, 1997; 385: 45–47

    Article  ADS  Google Scholar 

  47. Jiang X, Xiao Y F, Zou C, et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv Mater, 2012, 24: OP260OP264

    Google Scholar 

  48. Jiang X, Xiao Y F, Yang Q, et al. Free-space coupled, ultralowthreshold Raman lasing from a silica microcavity. Appl Phys Lett, 2013, 103: 101102

    Article  ADS  Google Scholar 

  49. Gmachl C, Capasso F, Narimanov E E, et al. High-power directional emission from microlasers with chaotic resonators. Science, 1998; 280: 1556–1564

    Article  ADS  Google Scholar 

  50. Xiao Y F, Dong C H, Han Z F, et al. Directional escape from a high-Q deformed microsphere induced by short CO2 laser pulses. Opt Lett, 2007; 32: 644–646

    Article  ADS  Google Scholar 

  51. Liu Z P, Jiang X F, Li Y, et al. High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization. Appl Phys Lett, 2013, 102: 221108

    Article  ADS  Google Scholar 

  52. Ku J F, Chen Q, Zhang R, et al. Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing. Opt Lett, 2011; 36: 2871–2873

    Article  ADS  Google Scholar 

  53. Lin J, Xu Y, Song J, et al. Low-threshold whispering-gallery-mode microlasers fabricated in a Nd:glass substrate by three-dimensional femtosecond laser micromachining. Opt Lett, 2013; 38: 1458–1460

    Article  ADS  Google Scholar 

  54. Ku J F, Chen Q, Ma X, et al. Photonic-molecule single-mode laser. IEEE Photon Tech Lett, 2015; 27: 1157–1160

    Article  ADS  Google Scholar 

  55. Ta V D, Chen R, Sun H. Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Adv Opt Mater, 2014; 2: 220–225

    Article  Google Scholar 

  56. Song J, Lin J, Tang J, et al. Fabrication of an integrated high-qualityfactor (high-Q) optofluidic sensor by femtosecond laser micromachining. Opt Exp, 2014, 22: 1479214802

    ADS  Google Scholar 

  57. Savchenkow A A, Matsko A B, Ilchenko V S, et al. Optical resonators with ten million finesse. Opt Exp, 2007; 15: 6769–6773

    ADS  Google Scholar 

  58. Lin G P, Diallo S, Henriet R, et al. Barium fluoride whisperinggallery- mode disk resonator with one billion quality-factor. Opt Lett, 2014; 39: 6009–6012

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HuaiLiang Xu or HongBo Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Sun, H. Femtosecond laser 3D fabrication of whispering-gallery-mode microcavities. Sci. China Phys. Mech. Astron. 58, 114202 (2015). https://doi.org/10.1007/s11433-015-5720-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5720-5

Keywords

Navigation