Skip to main content
Log in

Reversal and Preventive Pleiotropic Mechanisms Involved in the Antipsychotic-Like Effect of Taurine, an Essential β-Amino Acid in Ketamine-Induced Experimental Schizophrenia in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Schizophrenia is a life disabling, multisystem neuropsychiatric disease mostly derived from complex epigenetic-mediated neurobiological changes causing behavioural deficits. Neurochemical disorganizations, neurotrophic and neuroimmune alterations are some of the challenging neuropathologies proving unabated during psychopharmacology of schizophrenia, further bedeviled by drug-induced metabolic derangements including alteration of amino acids. In first-episode schizophrenia patients, taurine, an essential β-amino acid represses psychotic-symptoms. However, its anti-psychotic-like mechanisms remain incomplete. This study evaluated the ability of taurine to prevent or reverse ketamine-induced experimental psychosis and the underlying neurochemical, neurotrophic and neuroinmune mechanisms involved in taurine’s clinical action. The study consisted of three different experiments with Swiss mice (n = 7). In the drug alone, mice received saline (10 mL/kg/p.o./day), taurine (50 and 100 mg/kg/p.o./day) and risperidone (0.5 mg/kg/p.o./day) for 14 days. In the preventive study of separate cohort, mice were concomitantly given ketamine (20 mg/kg/i.p./day) from days 8 to 14. In the reversal study, mice received ketamine for 14 days before taurine or risperidone treatments from days 8 to 14 respectively. Afterwards, stereotypy behaviour, social, non-spatial memory deficits, and body weights were assessed. Neurochemical (dopamine, 5-hydroxytryptamine, glutamic acid decarboxylase, (GAD)), brain derived-neurotrophic factor (BDNF) and pro-inflammatory cytokines [tumor necrosis factor-alpha, (TNF-α), interleukin-6, (IL-6)] were assayed in the striatum, prefrontal-cortex and hippocampal area. Taurine attenuates ketamine-induced schizophrenia-like behaviour without changes in body weight. Taurine reduced ketamine-induced dopamine and 5-hydroxytryptamine changes, and increased GAD and BDNF levels in the striatum, prefrontal-cortex and hippocampus, suggesting increased GABAergic and neurotrophic transmissions. Taurine decreases ketamine-induced increased in TNF-α and IL-6 concentrations in the striatum, prefrontal-cortex and hippocampus. These findings also suggest that taurine protects against schizophrenia through neurochemical modulations, neurotrophic enhancement, and inhibition of neuropathologic cytokine activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Abbreviations

KET:

Ketamine

GAD:

Glutamic acid decarboxylase

BDNF:

Brain derived-neurotrophic factor

TNF- α:

Tumor necrosis factor alpha

IL-6:

Interleukin-6

DI:

Discrimination index

References

  1. Dietrich-Muszalska A, Kolodziejczyk-Czepas J, Nowak P (2021) Comparative study of the effects of atypical antipsychotic drugs on plasma and urine biomarkers of oxidative stress in schizophrenic patients. Neuropsychiatr Dis Treat 17:555–565. https://doi.org/10.2147/NDT.S283395

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chatterjee M, Verma R, Ganguly S, Palit G (2012) Neurochemical and molecular characterization of ketamine-induced experimental psychosis model in mice. Neuropharmacology 63(6):1161–1171. https://doi.org/10.1016/j.neuropharm.2012.05.041

    Article  CAS  PubMed  Google Scholar 

  3. Howes O, McCutcheon R, Stone J (2015) Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol 29(2):97–115. https://doi.org/10.1177/0269881114563634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang XY et al (2016) Interaction of BDNF with cytokines in chronic schizophrenia. Brain Behav Immun 51:169–175. https://doi.org/10.1016/j.bbi.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  5. Comer AL, Carrier M, Tremblay M-È, Cruz-Martín A (2020) The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation. Front Cell Neurosci 14:274. https://doi.org/10.3389/fncel.2020.00274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Monte AS et al (2013) Prevention and reversal of ketamine-induced schizophrenia related behavior by minocycline in mice: possible involvement of antioxidant and nitrergic pathways. J Psychopharmacol 27(11):1032–1043. https://doi.org/10.1177/0269881113503506

    Article  CAS  PubMed  Google Scholar 

  7. Ben-Azu B, Aderibigbe A, Adeoluwa O, Iwalewa E (2016) Ethanol extracts of Terminalia ivorensis (Chev A.) stem bark attenuates the positive, negative and cognitive symptoms of psychosis in experimental animal models. J Pharm Res Int. https://doi.org/10.9734/BJPR/2016/28629

    Article  Google Scholar 

  8. Ben-Azu B, Aderibigbe AO, Ajayi AM, Eneni A-EO, Umukoro S, Iwalewa EO (2018) Involvement of GABAergic, BDNF and Nox-2 mechanisms in the prevention and reversal of ketamine-induced schizophrenia-like behavior by morin in mice. Brain Res Bull 139:292–306. https://doi.org/10.1016/j.brainresbull.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  9. Ben-Azu B, Aderibigbe AO, Eneni A-EO, Ajayi AM, Umukoro S, Iwalewa EO (2018) Morin attenuates neurochemical changes and increased oxidative/nitrergic stress in brains of mice exposed to ketamine: prevention and reversal of schizophrenia-like symptoms. Neurochem Res 43(9):1745–1755. https://doi.org/10.1007/s11064-018-2590-z

    Article  CAS  PubMed  Google Scholar 

  10. Ben-Azu B et al (2018) Probable mechanisms involved in the antipsychotic-like activity of morin in mice. Biomed Pharmacother 105:1079–1090. https://doi.org/10.1016/j.biopha.2018.06.057

    Article  CAS  PubMed  Google Scholar 

  11. Omeiza NA et al (2022) Pretreatment with Carpolobia lutea ethanol extract prevents schizophrenia-like behavior in mice models of psychosis. J Ethnopharmacol 295:115432. https://doi.org/10.1016/j.jep.2022.115432

    Article  CAS  PubMed  Google Scholar 

  12. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57(3):237–245. https://doi.org/10.1001/archpsyc.57.3.237

    Article  CAS  PubMed  Google Scholar 

  13. Sánchez-Ramón S, Faure F, Jolles S, Leboyer M, Tremblay M-È (2021) Editorial: the crossroads between immunological disorders and neuropsychiatric diseases. A case for schizophrenia. Front Cell Neurosci 15:733997. https://doi.org/10.3389/fncel.2021.733997

    Article  PubMed  PubMed Central  Google Scholar 

  14. Beck K et al (2020) Association of ketamine with psychiatric symptoms and implications for its therapeutic use and for understanding schizophrenia: a systematic review and meta-analysis. JAMA Netw Open 3(5):e204693. https://doi.org/10.1001/jamanetworkopen.2020.4693

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lally J, MacCabe JH (2015) Antipsychotic medication in schizophrenia: a review. Br Med Bull 114(1):169–179. https://doi.org/10.1093/bmb/ldv017

    Article  CAS  PubMed  Google Scholar 

  16. Ramachandraiah CT, Subramaniam N, Tancer M (2009) The story of antipsychotics: past and present. Indian J Psychiatry 51(4):324–326. https://doi.org/10.4103/0019-5545.58304

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wu J-Y et al (2009) Mechanism of neuroprotective function of taurine. Adv Exp Med Biol 643:169–179. https://doi.org/10.1007/978-0-387-75681-3_17

    Article  CAS  PubMed  Google Scholar 

  18. Ommati MM, Heidari R, Ghanbarinejad V, Abdoli N, Niknahad H (2019) Taurine treatment provides neuroprotection in a mouse model of manganism. Biol Trace Elem Res 190(2):384–395. https://doi.org/10.1007/s12011-018-1552-2

    Article  CAS  PubMed  Google Scholar 

  19. Ishola IO et al (2021) Prevention and reversal of ketamine-induced experimental psychosis in mice by the neuroactive flavonoid, hesperidin: the role of oxidative and cholinergic mechanisms. Brain Res Bull 177:239–251. https://doi.org/10.1016/j.brainresbull.2021.10.007

    Article  CAS  PubMed  Google Scholar 

  20. Wu J-Y, Prentice H (2010) Role of taurine in the central nervous system. J Biomed Sci 17(Suppl 1):S1. https://doi.org/10.1186/1423-0127-17-S1-S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15(3–5):289–298. https://doi.org/10.1159/000111347

    Article  CAS  PubMed  Google Scholar 

  22. Sergeeva OA et al (2003) Taurine-induced long-lasting enhancement of synaptic transmission in mice: role of transporters. J Physiol 550(Pt 3):911. https://doi.org/10.1113/jphysiol.2003.045864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen WQ et al (2001) Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons. J Neurosci Res 66(4):612–619. https://doi.org/10.1002/jnr.10027

    Article  CAS  PubMed  Google Scholar 

  24. O’Donnell CP et al (2016) Adjunctive taurine in first-episode psychosis: a phase 2, double-blind, randomized, placebo-controlled study. J Clin Psychiatry 77(12):e1610–e1617. https://doi.org/10.4088/JCP.15m10185

    Article  PubMed  Google Scholar 

  25. Yang J et al (2019) Elevated glutamate, glutamine and GABA levels and reduced taurine level in a schizophrenia model using an in vitro proton nuclear magnetic resonance method. Am J Transl Res 11(9):5919–5931

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Oyovwi MO, Nwangwa EK, Ben-Azu B, Edesiri TP, Emojevwe V, Igweh JC (2021) Taurine and coenzyme Q10 synergistically prevent and reverse chlorpromazine-induced psycho-neuroendocrine changes and cataleptic behavior in rats. Naunyn Schmiedebergs Arch Pharmacol 394(4):717–734. https://doi.org/10.1007/s00210-020-02003-z

    Article  CAS  PubMed  Google Scholar 

  27. Takatani T et al (2004) Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol 287(4):C949-953. https://doi.org/10.1152/ajpcell.00042.2004

    Article  CAS  PubMed  Google Scholar 

  28. Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46(1):7–20. https://doi.org/10.1007/s00726-012-1361-4

    Article  CAS  PubMed  Google Scholar 

  29. del Olmo N, Bustamante J, del Río RM, Solís JM (2000) Taurine activates GABA(A) but not GABA(B) receptors in rat hippocampal CA1 area. Brain Res 864(2):298–307. https://doi.org/10.1016/s0006-8993(00)02211-3

    Article  PubMed  Google Scholar 

  30. Bulley S, Shen W (2010) Reciprocal regulation between taurine and glutamate response via Ca2+-dependent pathways in retinal third-order neurons. J Biomed Sci 17(Suppl 1):S5. https://doi.org/10.1186/1423-0127-17-S1-S5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith KE, Borden LA, Wang CH, Hartig PR, Branchek TA, Weinshank RL (1992) Cloning and expression of a high affinity taurine transporter from rat brain. Mol Pharmacol 42(4):563–569

    CAS  PubMed  Google Scholar 

  32. Mersman B, Zaidi W, Syed NI, Xu F (2020) Taurine promotes neurite outgrowth and synapse development of both vertebrate and invertebrate central neurons. Front Synaptic Neurosci 12:29. https://doi.org/10.3389/fnsyn.2020.00029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Uchida S, Kwon HM, Yamauchi A, Preston AS, Marumo F, Handler JS (1992) Molecular cloning of the cDNA for an MDCK cell Na(+)- and Cl(-)-dependent taurine transporter that is regulated by hypertonicity. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.89.17.8230

    Article  PubMed  PubMed Central  Google Scholar 

  34. Han X, Patters AB, Jones DP, Zelikovic I, Chesney RW (2006) The taurine transporter: mechanisms of regulation. Acta Physiol (Oxf) 187(1–2):61–73. https://doi.org/10.1111/j.1748-1716.2006.01573.x

    Article  CAS  PubMed  Google Scholar 

  35. Rak K et al (2014) Neurotrophic effects of taurine on spiral ganglion neurons in vitro. NeuroReport 25(16):1250–1254. https://doi.org/10.1097/WNR.0000000000000254

    Article  CAS  PubMed  Google Scholar 

  36. Ben-Azu B et al (2022) Taurine, an essential β-amino acid insulates against ketamine-induced experimental psychosis by enhancement of cholinergic neurotransmission, inhibition of oxidative/nitrergic imbalances, and suppression of COX-2/iNOS immunoreactions in mice. Metab Brain Dis. https://doi.org/10.1007/s11011-022-01075-5

    Article  PubMed  Google Scholar 

  37. de Araújo FYR et al (2021) Involvement of anti-inflammatory, antioxidant, and BDNF up-regulating properties in the antipsychotic-like effect of the essential oil of Alpinia zerumbet in mice: a comparative study with olanzapine. Metab Brain Dis 36(8):2283–2297. https://doi.org/10.1007/s11011-021-00821-5

    Article  CAS  PubMed  Google Scholar 

  38. Umukoro S, Aluko OM, Eduviere AT, Owoeye O (2016) Evaluation of adaptogenic-like property of methyl jasmonate in mice exposed to unpredictable chronic mild stress. Brain Res Bull 121:105–114. https://doi.org/10.1016/j.brainresbull.2015.11.016

    Article  CAS  PubMed  Google Scholar 

  39. Yu K, Hu S, Huang J, Mei L-H (2011) A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase. Enzyme Microb Technol 49(3):272–276. https://doi.org/10.1016/j.enzmictec.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  40. Schaffer S, Kim HW (2018) Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther (Seoul) 26(3):225–241. https://doi.org/10.4062/biomolther.2017.251

    Article  CAS  PubMed  Google Scholar 

  41. Ghandforoush-Sattari M, Mashayekhi S, Krishna CV, Thompson JP, Routledge PA (2010) Pharmacokinetics of oral taurine in healthy volunteers. J Amino Acids. https://doi.org/10.4061/2010/346237

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rajagopal S, Sangam SR, Singh S, Joginapally VR (2016) Modulatory effects of dietary amino acids on neurodegenerative diseases. Adv Neurobiol 12:401–414. https://doi.org/10.1007/978-3-319-28383-8_22

    Article  PubMed  Google Scholar 

  43. Tamai I, Senmaru M, Terasaki T, Tsuji A (1995) Na(+)- and Cl(-)-dependent transport of taurine at the blood-brain barrier. Biochem Pharmacol 50(11):1783–1793. https://doi.org/10.1016/0006-2952(95)02046-2

    Article  CAS  PubMed  Google Scholar 

  44. Li X-W, Gao H-Y, Liu J (2017) The role of taurine in improving neural stem cells proliferation and differentiation. Nutr Neurosci 20(7):409–415. https://doi.org/10.1080/1028415X.2016.1152004

    Article  CAS  PubMed  Google Scholar 

  45. Rahmeier FL et al (2016) The effect of taurine and enriched environment on behaviour, memory and hippocampus of diabetic rats. Neurosci Lett 630:84–92. https://doi.org/10.1016/j.neulet.2016.07.032

    Article  CAS  PubMed  Google Scholar 

  46. Burton S (2006) Symptom domains of schizophrenia: the role of atypical antipsychotic agents. J Psychopharmacol 20(6 Suppl):6–19. https://doi.org/10.1177/1359786806071237

    Article  PubMed  Google Scholar 

  47. Wu G-F et al (2017) Antidepressant effect of taurine in chronic unpredictable mild stress-induced depressive rats. Sci Rep 7(1):4989. https://doi.org/10.1038/s41598-017-05051-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Newcomer JW, Haupt DW (2006) The metabolic effects of antipsychotic medications. Can J Psychiatry 51(8):480–491. https://doi.org/10.1177/070674370605100803

    Article  PubMed  Google Scholar 

  49. Haidari F, Asadi M, Mohammadi-Asl J, Ahmadi-Angali K (2020) Effect of weight-loss diet combined with taurine supplementation on body composition and some biochemical markers in obese women: a randomized clinical trial. Amino Acids 52(8):1115–1124. https://doi.org/10.1007/s00726-020-02876-7

    Article  CAS  PubMed  Google Scholar 

  50. Ben-Azu B et al (2019) Morin decreases cortical pyramidal neuron degeneration via inhibition of neuroinflammation in mouse model of schizophrenia. Int Immunopharmacol 70:338–353. https://doi.org/10.1016/j.intimp.2019.02.052

    Article  CAS  PubMed  Google Scholar 

  51. Hashimoto T et al (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 23(15):6315–6326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Snyder MA, Gao W-J (2020) NMDA receptor hypofunction for schizophrenia revisited: perspectives from epigenetic mechanisms. Schizophr Res 217:60–70. https://doi.org/10.1016/j.schres.2019.03.010

    Article  PubMed  Google Scholar 

  53. Merritt K, Egerton A, Kempton MJ, Taylor MJ, McGuire PK (2016) Nature of glutamate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiat 73(7):665–674. https://doi.org/10.1001/jamapsychiatry.2016.0442

    Article  Google Scholar 

  54. Krebs MO, Gauchy C, Desban M, Glowinski J, Kemel ML (1994) Role of dynorphin and GABA in the inhibitory regulation of NMDA-induced dopamine release in striosome- and matrix-enriched areas of the rat striatum. J Neurosci 14(4):2435–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Johnston A, McBain CJ, Fisahn A (2014) 5-Hydroxytryptamine1A receptor-activation hyperpolarizes pyramidal cells and suppresses hippocampal gamma oscillations via Kir3 channel activation. J Physiol 592(19):4187–4199. https://doi.org/10.1113/jphysiol.2014.279083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paolucci E, Berretta N, Tozzi A, Bernardi G, Mercuri NB (2003) Depression of mGluR-mediated IPSCs by 5-HT in dopamine neurons of the rat substantia nigra pars compacta. Eur J Neurosci 18(10):2743–2750. https://doi.org/10.1111/j.1460-9568.2003.03015.x

    Article  CAS  PubMed  Google Scholar 

  57. Akil M, Edgar CL, Pierri JN, Casali S, Lewis DA (2000) Decreased density of tyrosine hydroxylase-immunoreactive axons in the entorhinal cortex of schizophrenic subjects. Biol Psychiatry 47(5):361–370. https://doi.org/10.1016/s0006-3223(99)00282-6

    Article  CAS  PubMed  Google Scholar 

  58. Slifstein M et al (2015) Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiat 72(4):316–324. https://doi.org/10.1001/jamapsychiatry.2014.2414

    Article  Google Scholar 

  59. Laruelle M et al (2000) Dopamine and serotonin transporters in patients with schizophrenia: an imaging study with [(123)I]beta-CIT. Biol Psychiatry 47(5):371–379. https://doi.org/10.1016/s0006-3223(99)00257-7

    Article  CAS  PubMed  Google Scholar 

  60. El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29(1):189–197. https://doi.org/10.1023/b:nere.0000010448.17740.6e

    Article  PubMed  Google Scholar 

  61. Jia F et al (2008) Taurine is a potent activator of extrasynaptic GABA(A) receptors in the thalamus. J Neurosci 28(1):106–115. https://doi.org/10.1523/JNEUROSCI.3996-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Golubeva AV et al (2017) Microbiota-related changes in bile acid and tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 24:166–178. https://doi.org/10.1016/j.ebiom.2017.09.020

    Article  PubMed  PubMed Central  Google Scholar 

  63. Baydyuk M, Xu B (2014) BDNF signaling and survival of striatal neurons. Front Cell Neurosci 8:254. https://doi.org/10.3389/fncel.2014.00254

    Article  PubMed  PubMed Central  Google Scholar 

  64. Huo L, Zheng Z, Lu X, Wu F, Ning Y, Zhang XY (2021) Decreased peripheral BDNF levels and cognitive impairment in late-life schizophrenia. Front Psychiatry 12:641278. https://doi.org/10.3389/fpsyt.2021.641278

    Article  PubMed  PubMed Central  Google Scholar 

  65. Momtazmanesh S, Zare-Shahabadi A, Rezaei N (2019) Cytokine alterations in schizophrenia: an updated review. Front Psychiatry 10:892. https://doi.org/10.3389/fpsyt.2019.00892

    Article  PubMed  PubMed Central  Google Scholar 

  66. Vernon AC et al (2015) Longitudinal in vivo maturational changes of metabolites in the prefrontal cortex of rats exposed to polyinosinic-polycytidylic acid in utero. Eur Neuropsychopharmacol 25(12):2210–2220. https://doi.org/10.1016/j.euroneuro.2015.09.022

    Article  CAS  PubMed  Google Scholar 

  67. Winter C et al (2009) Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. Int J Neuropsychopharmacol 12(4):513–524. https://doi.org/10.1017/S1461145708009206

    Article  CAS  PubMed  Google Scholar 

  68. Surai PF, Earle-Payne K, Kidd MT (2021) Taurine as a natural antioxidant: from direct antioxidant effects to protective action in various toxicological models. Antioxidants. https://doi.org/10.3390/antiox10121876

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Authors are very grateful to the technical staff of the Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences for their technical input during the course of the study. Also, the authors are thankful to the International Brain Research Organization (IBRO)-African Regional Committee (ARC) for the 2019 Bursary Fellowship award for this study.

Funding

Benneth Ben-Azu was supported by an International Brain Research Organization African Regional Committee (IBRO-ARC) 2019 Grant for a Postdoctoral Fellowship on Schizophrenia Research at the University of Victoria, BC Canada.

Author information

Authors and Affiliations

Authors

Contributions

BBA, GOA, CIU, KEN and DEA: conceived the study and designed the experimental protocol. BBA, MGO, CBO, ECO, EBW, NLE, UVE and DEA: carried out the experiment. BBA, KCC, MGO, GOA, and AMA: contributed new reagents and analytical tool. BBA, AMA, and KEN: supervised the study. BBA, AMA and BSC: analyzed the data. BBA, BSC and CUI: wrote the manuscript. All authors read and approved the manuscript. All data were generated in-house and no paper mill was used. All authors contributed to this research work and the development of the final manuscript.

Corresponding author

Correspondence to Benneth Ben-Azu.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional (Delta State University Animal Care and Use Research Ethics Committee) guidelines for the care and use of animals were followed according to the ethical approval number: REC/FBMS/DELSU/21/94.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Azu, B., Uruaka, C.I., Ajayi, A.M. et al. Reversal and Preventive Pleiotropic Mechanisms Involved in the Antipsychotic-Like Effect of Taurine, an Essential β-Amino Acid in Ketamine-Induced Experimental Schizophrenia in Mice. Neurochem Res 48, 816–829 (2023). https://doi.org/10.1007/s11064-022-03808-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03808-5

Keywords

Navigation