Skip to main content
Log in

Low-Temperature Detectors for CMB Imaging Arrays

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We review advances in low-temperature detector (LTD) arrays for cosmic microwave background (CMB) polarization experiments, with a particular emphasis on imaging arrays. We briefly motivate the science case, which has spurred a large number of independent experimental efforts. We describe the challenges associated with CMB polarization measurements, and how these challenges impact LTD design. Key aspects of an ideal CMB polarization imaging array are developed and compared to the current state of the art. These aspects include dual-polarization sensitivity, background-limited detection over a 10:1 bandwidth ratio, and frequency-independent angular responses. Although existing technology lacks all of this capability, today’s CMB imaging arrays achieve many of these ideals and are highly advanced superconducting integrated circuits. Deployed arrays map the sky with pixels that contain elements for beam formation, polarization diplexing, passband definition in multiple frequency channels, and bolometric sensing. Several detector architectures are presented. We comment on the implementation of both transition-edge sensor bolometers and microwave kinetic inductance detectors for CMB applications. Lastly, we discuss fabrication capability in the context of next-generation instruments that call for \(\sim 10^6\) sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. This calculation assumes that photon noise from the CMB is the only noise source and that the noiseless detector perfectly couples to a single electromagnetic mode over the frequency range 125–165 GHz.

  2. This calculation depends slightly on the Lyot stop temperature.

References

  1. Planck Collaboration, Astron. Astrophys. 571 (2014)

  2. T. Matsumura et al., J. Low Temp. Phys. 176, 5–6 (2014)

    Article  Google Scholar 

  3. A. Challinor, Proc. Int. Astron. Union 8, S288 (2012)

    Article  Google Scholar 

  4. K.N. Abazajian et al. (2016). arXiv:1610.02743

  5. M. Kamionkowski, E.D. Kovetz, Ann. Rev. Astron. Astrophys. 54 (2016). arXiv:1510.06042

    Article  ADS  Google Scholar 

  6. F. Finelli et al., J. Cosmol. Astropart. Phys. 4, 016 (2018). arXiv:1612.08270

    Article  ADS  MathSciNet  Google Scholar 

  7. E. Di Valentino et al. J. Cosmol. Astropart. Phys. 4 (2018). arXiv:1612.00021

  8. A. Challinor et al. J. Cosmol. Astropart. Phys. 4 (2018). arXiv:1707.02259

  9. J.-B. Melin et al. J. Cosmol. Astropart. Phys. 4 (2018). arXiv:1703.10456

  10. U. Seljak, Astrophys. J. 482, 1 (1997)

    Article  ADS  Google Scholar 

  11. M. Kamionkowski, A. Kosowsky, A. Stebbins, Phys. Rev. Lett. 78, 11 (1997)

    Article  Google Scholar 

  12. U. Seljak, M. Zaldarriaga, Phys. Rev. Lett. 78, 11 (1997)

    Article  Google Scholar 

  13. K.D. Irwin, G.C. Hilton, Cryogenic Particle Detection (Springer, Berlin, 2005), pp. 63–150

    Google Scholar 

  14. P.K. Day et al., Nature 425, 817 (2003)

    Article  ADS  Google Scholar 

  15. J. Baselmans, J. Low Temp. Phys. 167, 3–4 (2012)

    Google Scholar 

  16. Simons Observatory. https://simonsobservatory.org/. Accessed 1 Aug 2017

  17. J.A. Grayson et al. in SPIE Conference Series, vol. 9914 (2016). arxiv:1607.04668

  18. Y.-P. Li et al. (2017). arXiv:1709.09053

  19. M.H. Abitbol et al. (2017). arXiv:1706.02464

  20. Planck Collaboration, Astron. Astrophys. 594 A13 (2016)

  21. T. Louis et al., J. Cosmol. Astropart. Phys. 2017, 06 (2017)

    Article  Google Scholar 

  22. R. Keisler et al., Astrophys. J. 807, 2 (2015)

    Article  Google Scholar 

  23. A. Crites et al., Astrophys. J. 805, 1 (2015)

    Article  ADS  Google Scholar 

  24. D. Hanson et al., Phys. Rev. Lett. 111(14), 141301 (2013). arXiv:1307.5830

    Article  ADS  Google Scholar 

  25. P.A. Ade et al., Phys. Rev. Lett. 116, 3 (2016)

    Article  Google Scholar 

  26. P. Ade et al., Astrophys. J. 794, 2 (2014)

    Article  Google Scholar 

  27. P. Ade et al. (2017). arXiv:1705.02907

  28. D. O’Dea, A. Challinor, B.R. Johnson, Mon. Not. R. Astron Soc. 376, 4 (2007)

    Google Scholar 

  29. M. Shimon et al., Phys. Rev. D 77, 8 (2008)

    Article  Google Scholar 

  30. P.F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications (IEEE Press, New York, 1998)

  31. J.W. Lamb, Int. J. Infrared Millim. Waves 17, 12 (1996)

    Google Scholar 

  32. M. Remazeilles et al., J. Cosmol. Astropart. Phys. 2018, 04 (2018)

    Article  Google Scholar 

  33. Planck Collaboration, Astron. Astrophys. 594, A10 (2016)

  34. C.L. Kuo et al. in SPIE Conference Series, vol. 7020 (2008). arXiv:0908.1464

  35. R. O’Brient et al. in SPIE Conference Series, vol. 8452 (2012). arXiv:1208.1247

  36. K. Yoon et al. in AIP Conference Proceedings, vol. 1185. AIP (2009)

  37. D.T. Chuss et al., J. Low Temp. Phys. 167, 5–6 (2012)

    Article  Google Scholar 

  38. K. Arnold et al. in SPIE Conference Series, vol. 8452 (2012). arXiv:1210.7877

  39. J. Zmuidzinas, Appl. Opt. 42, 25 (2003)

    Article  Google Scholar 

  40. R.W. Boyd, Infrared Phys. 22, 3 (1982)

    Article  Google Scholar 

  41. J. Errard et al., J. Cosmol. Astropart. Phys. 2016, 03 (2016)

    Article  Google Scholar 

  42. Planck HFI Core Team, Astron. Astrophys. 536, A4 (2011). arXiv:1101.2039

  43. J. Delabrouille et al., J. Cosmol. Astropart. Phys. 4, 014 (2018)

    Article  ADS  Google Scholar 

  44. R. Gualtieri et al., J. Low Temp. Phys. 184, 3–4 (2016)

    Article  Google Scholar 

  45. P.C. Nagler et al. (2016). arXiv:1611.04466

  46. E. Grace et al., in SPIE Conference Series 9153 (2014)

  47. R.J. Thornton et al., Astrophys. J. Suppl. Ser. 227 (2016). arXiv:1605.06569

  48. P.A. Ade et al., Astrophys. J. 792, 1 (2014)

    Article  Google Scholar 

  49. J.E. Austermann et al., in SPIE Conference Series, vol. 8452 (2012). arXiv:1210.4970

  50. P.A. Ade et al., Astrophys. J. 811, 2 (2015)

    Article  ADS  Google Scholar 

  51. K. Arnold et al., in SPIE Conference Series, vol. 7741 (2010)

  52. R. Datta et al., J. Low Temp. Phys. 176 (2014). arXiv:1401.8029

  53. J. Hubmayr et al., 26th Int. ISSTT (2015)

  54. A. Suzuki et al., J. Low Temp. Phys. 167, 5–6 (2012)

    Article  Google Scholar 

  55. R. Datta et al., J. Low Temp. Phys. 184 (2016). arXiv:1510.07797

  56. S. Choi et al., J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1982-4

  57. K. Crowley et al., J. Low Temp. Phys., Submitted (2018)

  58. S.-P. P. Ho et al., in SPIE Conference Series, vol. 9914 (2017)

  59. K.T. Crowley et al., in SPIE Conference Series, vol. 9914 (2016)

  60. A.J. Anderson et al., J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-2007-z

  61. K. Arnold et al., in SPIE Conference Series, vol. 9153 (2014)

  62. J. McMahon et al., J. Low Temp. Phys. 167, 879–884 (2012). arXiv:1201.4124

    Article  ADS  Google Scholar 

  63. J. Hubmayr et al., in SPIE Conference Series, vol. 9914 (2016). arXiv:1606.09396

  64. B. Westbrook et al., J. Low Temp. Phys. 184, 1–2 (2016)

    Article  Google Scholar 

  65. C. Posada et al., Superconduct. Sci. Technol. 28, 9 (2015)

    Article  Google Scholar 

  66. Z. Pan et al., J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1935-y

  67. M.J. Griffin, J.J. Bock, W.K. Gear, Appl. Opt. 41, 31 (2002)

    Article  Google Scholar 

  68. A. Cukierman et al., Appl. Phys. Lett. 112, 132601 (2018)

    Article  ADS  Google Scholar 

  69. S.-F. Lee et al., Appl. Opt. 37, 16 (1998)

    Google Scholar 

  70. J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 1 (2012)

    Article  Google Scholar 

  71. S.R. Golwala et al., in SPIE Conference Series, vol. 8452 (2012). arxiv:1211.0595

  72. A. Catalano et al., Astron. Astrophys. 569 (2014). arXiv:1402.0260

  73. R. Adam et al., Astron. Astrophys. 609 (2018). arXiv:1707.00908

  74. S. Oguri et al., J. Low Temp. Phys. 184 (2016)

  75. B.R. Johnson et al. (2017). arXiv:1711.02523

  76. Q.Y. Tang et al. (2017). arXiv:1710.11255

  77. A. Dominjon et al., in 2017 16th International Superconductive Electronics Conference (ISEC) (2017)

  78. N. Galitzki et al., J. Astro. Inst. 3, 1440001 (2014). arXiv:1409.7084

    Article  Google Scholar 

  79. A. Lowitz et al., J. Low Temp. Phys. 176, 3–4 (2014)

    Article  Google Scholar 

  80. J.C. Mather, Appl. Opt. 21, 6 (1982)

    Article  Google Scholar 

  81. P. De Visser et al., Phys. Rev. Lett. 106, 16 (2011)

    Article  Google Scholar 

  82. P.J. de Visser et al., J. Low Temp. Phys. 167, 3 (2012)

    Article  Google Scholar 

  83. D. Flanigan et al., Appl. Phys. Lett. 108, 083504 (2016). arXiv:1510.06609

  84. T. Guruswamy, D. Goldie, S. Withington, Superconduct. Sci. Technol. 27, 5 (2014)

    Article  Google Scholar 

  85. P. De Visser et al., Appl. Phys. Lett. 106, 25 (2015)

    Article  Google Scholar 

  86. O. Quaranta et al., Superconduct. Sci. Technol. 26, 10 (2013)

    Article  Google Scholar 

  87. A. Miceli et al., J. Low Temp. Phys. 176, 3 (2014)

    Article  Google Scholar 

  88. B.A. Steinbach et al. (2018). arXiv:1803.06413

  89. J. Gao et al., Appl. Phys. Lett. 92, 21 (2008)

    Google Scholar 

  90. B.R. Johnson et al. (2016). arXiv:1607.03796

  91. C. Ji et al., in SPIE Conference Series 9153 (2014)

  92. A.A. Fraisse et al., J. Cos. Astro. Phys. 4 (2013). arxiv:1106.3087

  93. Z. Staniszewski et al., J. Low Temp. Phys. 167 (2012)

  94. Z. Ahmed et al., in SPIE Conference Series 9153 (2014). arXiv:1407.5928

  95. H. Hui et al., in SPIE Conference Series, vol. 10708 (2018)

  96. H. Li et al. (2018). arXiv:1710.03047

  97. S. Duff et al., J. Low Temp. Phys. 184, 3–4 (2016)

    Article  Google Scholar 

  98. S.K. Choi et al. (2018). arXiv:1711.04841

  99. A.S. Bergman et al. (2017). arXiv:1711.04169

Download references

Acknowledgements

We thank Lyman Page, Roger O’Brient, Adam Anderson, and Kam Arnold for figure contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hubmayr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubmayr, J., Austermann, J.E., Beall, J.A. et al. Low-Temperature Detectors for CMB Imaging Arrays. J Low Temp Phys 193, 633–647 (2018). https://doi.org/10.1007/s10909-018-2029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2029-6

Keywords

Navigation