Skip to main content
Log in

A Reference Correlation for the Viscosity of Krypton From Entropy Scaling

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We present a new wide-ranging correlation for the viscosity of krypton based on critically evaluated experimental data. For the first time, such a correlation has as its basis the entropy scaling approach. We base the residual contribution on the Lennard-Jones fluid, resulting in one adjustable parameter for the entire phase diagram away from the dilute-gas limit. The estimated uncertainty is less than 2.0 % (at the 95 % confidence level) over the entire phase diagram, except in the extended critical region. The correlation is valid from 70 K to 5000 K for the dilute gas, and from 115.775 K to 750 K in the fluid phase, with a pressure limit equal to that of the melting curve

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

In order to ensure reproducibility of the results, the supplementary material includes primary data in tabular form.

References

  1. C. Tsolakidou, M.J. Assael, M. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 46(2), 023103 (2017). https://doi.org/10.1063/1.4983027

    Article  ADS  Google Scholar 

  2. M. Huber, M. Assael, Int. J. Refrig. 71, 39 (2016). https://doi.org/10.1016/j.ijrefrig.2016.08.007

    Article  Google Scholar 

  3. M.L. Huber, R.A. Perkins, A. Laesecke, D.G. Friend, J.V. Sengers, M.J. Assael, I.N. Metaxa, E. Vogel, R. Mares, K. Miyagawa, J. Phys. Chem. Ref. Data 38(2), 101 (2009). https://doi.org/10.1063/1.3088050

    Article  ADS  Google Scholar 

  4. M. Assael, T. Papalas, M. Huber, J. Phys. Chem. Ref. Data 46, 033103 (2017). https://doi.org/10.1063/1.4996885

    Article  ADS  Google Scholar 

  5. S. Avgeri, M. Assael, M. Huber, R. Perkins, J. Phys. Chem. Ref. Data 43(3), 033130 (2014). https://doi.org/10.1063/1.4892935

    Article  Google Scholar 

  6. S. Avgeri, M. Assael, M. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 44(3), 033101 (2015). https://doi.org/10.1063/1.4926955

    Article  ADS  Google Scholar 

  7. E. Michailidou, M. Assael, M. Huber, I. Abdulagatov, R.A. Perkins, J. Phys. Chem. Ref. Data 43(2), 023103 (2014). https://doi.org/10.1063/1.4875930

    Article  ADS  Google Scholar 

  8. E. Michailidou, M. Assael, M. Huber, R. Perkins, J. Phys. Chem. Ref. Data 42(3), 033104 (2013). https://doi.org/10.1063/1.4818980

    Article  ADS  Google Scholar 

  9. H. Hanley, R. McCarty, W. Haynes, J. Phys. Chem. Ref. Data 3, 979 (1974). https://doi.org/10.1063/1.3253152

    Article  ADS  Google Scholar 

  10. M.L. Huber, Models for viscosity, thermal conductivity, and surface tension of selected pure fluids as implemented in REFPROP v10.0. Tech. rep. (2018). https://doi.org/10.6028/nist.ir.8209

  11. E. Lemmon, I. Bell, M. Huber, M. McLinden, NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 10.0 (2018)

  12. M. Assael, A. Kalyva, S. Monogenidou, M. Huber, R. Perkins, D. Friend, E. May, J. Phys. Chem. Ref. Data 47, 021501 (2018). https://doi.org/10.1063/1.5036625

    Article  ADS  Google Scholar 

  13. D. Velliadou, K.A. Tasidou, K.D. Antoniadis, M.J. Assael, R.A. Perkins, M.L. Huber, Int. J. Thermophys. 42, 5 (2021). https://doi.org/10.1007/s10765-021-02818-9

    Article  Google Scholar 

  14. E. Vogel, Int. J. Thermophys. 16(6), 1335 (1995). https://doi.org/10.1007/bf02083544

    Article  ADS  Google Scholar 

  15. L.T. Novak, Int. J. Chem. React. Eng. 9, A107 (2011)

    Google Scholar 

  16. O. Lötgering-Lin, J. Gross, Ind. Eng. Chem. Res. 54(32), 7942 (2015). https://doi.org/10.1021/acs.iecr.5b01698

    Article  Google Scholar 

  17. I.H. Bell, Proc. Natl. Acad. Sci. U.S.A. 116(10), 4070 (2019). https://doi.org/10.1073/pnas.1815943116

    Article  Google Scholar 

  18. I.H. Bell, J. Chem. Eng. Data 65(6), 3203 (2020). https://doi.org/10.1021/acs.jced.0c00209

    Article  Google Scholar 

  19. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology. http://www.nist.gov/srd/nist23.cfm (2018)

  20. I.H. Bell, J. Wronski, S. Quoilin, V. Lemort, Ind. Eng. Chem. Res. 53(6), 2498 (2014). https://doi.org/10.1021/ie4033999

    Article  Google Scholar 

  21. I.H. Bell, J. Chem. Eng. Data 65(11), 5606 (2020). https://doi.org/10.1021/acs.jced.0c00749

    Article  Google Scholar 

  22. X. Yang, X. Xiao, E.F. May, I.H. Bell, J. Chem. Eng. Data (2021). https://doi.org/10.1021/acs.jced.0c01009

    Article  Google Scholar 

  23. Y. Rosenfeld, Phys. Rev. A 15, 2545 (1977). https://doi.org/10.1103/PhysRevA.15.2545

    Article  ADS  Google Scholar 

  24. Y. Rosenfeld, J. Phys.: Condens. Matter 11(28), 5415 (1999). https://doi.org/10.1088/0953-8984/11/28/303

    Article  ADS  Google Scholar 

  25. I.H. Bell, R. Messerly, M. Thol, L. Costigliola, J. Dyre, J. Phys. Chem. B 123(29), 6345 (2019). https://doi.org/10.1021/acs.jpcb.9b05808

    Article  Google Scholar 

  26. M.B.M. Taib, J.P.M. Trusler, J. Chem. Phys. 152(16), 164104 (2020). https://doi.org/10.1063/5.0002242

    Article  ADS  Google Scholar 

  27. I.H. Bell, R. Hellmann, A.H. Harvey, J. Chem. Eng. Data 65(3), 1038 (2019). https://doi.org/10.1021/acs.jced.9b00455

    Article  Google Scholar 

  28. M.L. Huber, A. Laesecke, R.A. Perkins, Ind. Eng. Chem. Res. 42, 3163 (2003). https://doi.org/10.1021/ie0300880

    Article  Google Scholar 

  29. I.H. Bell, A. Laesecke, in Proceedings of the 16th International Refrigeration and Air Conditioning Conference at Purdue, July 11–14, 2016 (2016)

  30. N.P. Bailey, U.R. Pedersen, N. Gnan, T.B. Schrøder, J.C. Dyre, J. Chem. Phys. 129(18), 184507 (2008). https://doi.org/10.1063/1.2982247

    Article  ADS  Google Scholar 

  31. N.P. Bailey, U.R. Pedersen, N. Gnan, T.B. Schrøder, J.C. Dyre, J. Chem. Phys. 129(18), 184508 (2008). https://doi.org/10.1063/1.2982249

    Article  ADS  Google Scholar 

  32. N. Gnan, T.B. Schrøder, U.R. Pedersen, N.P. Bailey, J.C. Dyre, J. Chem. Phys. 131(23), 234504 (2009). https://doi.org/10.1063/1.3265957

    Article  ADS  Google Scholar 

  33. T.B. Schrøder, N.P. Bailey, U.R. Pedersen, N. Gnan, J.C. Dyre, J. Chem. Phys. 131(23), 234503 (2009). https://doi.org/10.1063/1.3265955

    Article  ADS  Google Scholar 

  34. T.B. Schrøder, N. Gnan, U.R. Pedersen, N.P. Bailey, J.C. Dyre, J. Chem. Phys. 134(16), 164505 (2011). https://doi.org/10.1063/1.3582900

    Article  ADS  Google Scholar 

  35. R. Svehla, Estimated viscosities and thermal conductivities of gases at high temperatures, NASA Technical Report R-132, Cleveland (1962). https://ntrs.nasa.gov/api/citations/19630012982/downloads/19630012982.pdf

  36. B. Najafi, E. Mason, J. Kestin, Physica 119A(3), 387 (1983). https://doi.org/10.1016/0378-4371(83)90101-2

    Article  ADS  Google Scholar 

  37. N. Vargaftik, Y.D. Vasilevskaya, J. Eng. Phys. 46, 30 (1984). https://doi.org/10.1007/BF00826162

    Article  Google Scholar 

  38. L. Golovicher, O. Kolenchits, N. Nesteroc, J. Eng. Phys. 56, 689 (1989). https://doi.org/10.1007/BF00870442

    Article  Google Scholar 

  39. E. Bich, J. Millat, E. Vogel, J. Phys. Chem. Ref. Data 19(6), 1289 (1990). https://doi.org/10.1063/1.555846

    Article  ADS  Google Scholar 

  40. R. Berg, M. Moldover, J. Phys. Chem. Ref. Data 41(4), 043104 (2012). https://doi.org/10.1063/1.4765368

    Article  ADS  Google Scholar 

  41. E. Vogel, Int. J. Thermophys. 37, 63 (2016). https://doi.org/10.1007/s10765-016-2068-7

    Article  ADS  Google Scholar 

  42. E. Vogel, Ber. Bunsenges. Phys. Chem. 88(10), 997 (1984). https://doi.org/10.1002/bbpc.19840881014

    Article  Google Scholar 

  43. B. Jäger, R. Hellmann, E. Bich, E. Vogel, J. Chem. Phys. 144(11), 114304 (2016). https://doi.org/10.1063/1.4943959

    Article  ADS  Google Scholar 

  44. X. Xiao, D. Rowland, S. Al Ghafri, E. May, J. Phys. Chem. Ref. Data (2020). https://doi.org/10.1063/1.5125100

    Article  Google Scholar 

  45. X. Xiao, D. Rowland, S. Al Ghafri, E. May, J. Phys. Chem. Ref. Data (2020). https://doi.org/10.1063/5.0004137

    Article  Google Scholar 

  46. W. Cencek, M. Przybytek, J. Komasa, J. Mehl, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 136, 224303 (2012). https://doi.org/10.1063/1.4712218

    Article  ADS  Google Scholar 

  47. E. May, R. Berg, M. Moldover, Int. J. Thermophys. 28, 1085 (2007). https://doi.org/10.1007/s10765-007-0198-7

    Article  ADS  Google Scholar 

  48. B. Jäger, R. Hellmann, E. Bich, E. Vogel, J. Chem. Phys. 144, 114304 (2016). https://doi.org/10.1063/1.4943959

    Article  ADS  Google Scholar 

  49. K. Humberg, M. Richter, Ind. Eng. Chem. Res. 58, 8878 (2019). https://doi.org/10.1021/acs.iecr.9b01533

    Article  Google Scholar 

  50. H. Lin, J. Che, J. Zhang, X. Feng, Fluid Phase Equilib. 4180, 198 (2016). https://doi.org/10.1016/j.fluid.2016.01.038

    Article  Google Scholar 

  51. C. Evers, H.W. Loesch, W. Wagner, Int. J. Thermophys. 23, 1411 (2002). https://doi.org/10.1023/A:1020784330515

    Article  Google Scholar 

  52. J. Wilhelm, E. Vogel, Int. J. Thermophys. 21, 301 (2000). https://doi.org/10.1023/A:1006667125801

    Article  Google Scholar 

  53. H. Abachi, J. Molenat, P. Malbrunot, Phys. Lett. 80A, 171 (1980). https://doi.org/10.1016/0375-9601(80)90214-5

    Article  ADS  Google Scholar 

  54. S. Ulybin, V.I. Makarushkin, S.V. Skorodumov, Teplofiz. Vys. Temp. 16, 282 (1978)

    Google Scholar 

  55. J. Kestin, H.E. Khalifa, W.A. Wakeham, Physica A 90A, 215 (1978). https://doi.org/10.1016/0378-4371(78)90110-3

    Article  ADS  Google Scholar 

  56. H.D. Berg, N. Trappeniers, Chem. Phys. Lett. 58(1), 12 (1978). https://doi.org/10.1016/0009-2614(78)80307-8

    Article  ADS  Google Scholar 

  57. D.W. Gough, G.P. Matthews, E.B. Smith, Trans. Faraday Soc. 72, 645 (1976). https://doi.org/10.1039/F19767200645

    Article  Google Scholar 

  58. J. Kestin, S.T. Ro, W.A. Wakeham, J. Phys. Chem. 56, 4086 (1972). https://doi.org/10.1063/1.1677819

    Article  Google Scholar 

  59. R.A. Dawe, E.B. Smith, J. Chem. Phys. 52, 693 (1970). https://doi.org/10.1063/1.1673042

    Article  ADS  Google Scholar 

  60. A.S. Kalelkar, J. Kestin, J. Chem. Phys. 52, 4248 (1970). https://doi.org/10.1063/1.1673636

    Article  ADS  Google Scholar 

  61. A.G. Clarke, E.B. Smith, J. Chem. Phys. 48, 3988 (1968). https://doi.org/10.1063/1.1669725

    Article  ADS  Google Scholar 

  62. J.P. Boon, J.C. Legros, G. Thomaes, Physica 33, 547 (1967). https://doi.org/10.1016/0031-8914(67)90203-0

    Article  ADS  Google Scholar 

  63. M. Rigby, E.B. Smith, Trans. Faraday Soc. 62, 54 (1966). https://doi.org/10.1063/1.1673042

    Article  Google Scholar 

  64. N.J. Trappeniers, A. Botzen, J. Van Oosten, H.R. Van den Berg, Physica 31, 945 (1965)

    Article  ADS  Google Scholar 

  65. E.G. Reynes, G. Thodos, Physica 30, 1529 (1964). https://doi.org/10.1016/0031-8914(64)90177-6

    Article  ADS  Google Scholar 

  66. E. Thornton, Proc. Phys. Soc. 76, 104 (1960)

    Article  ADS  Google Scholar 

  67. B.Y. Baharudin, D.A. Jackson, P.E. Schoen, J. Rouch, Phys. Lett. A 51A, 409 (1975). https://doi.org/10.1016/0375-9601(75)90750-1

    Article  ADS  Google Scholar 

  68. D. Clifton, J. Chem. Phys. 38, 1123 (1963). https://doi.org/10.1063/1.1733813

    Article  ADS  Google Scholar 

  69. J. Kestin, W. Leidenfrost, Physica 25, 1033 (1959). https://doi.org/10.1016/0031-8914(59)90024-2

    Article  ADS  Google Scholar 

  70. E. Lemmon, R. Span, J. Chem. Eng. Data 51, 785 (2006). https://doi.org/10.1021/je050186n

    Article  Google Scholar 

  71. I.H. Bell, J. Chem. Phys. 152, 164508 (2020). https://doi.org/10.1063/5.0007583

    Article  ADS  Google Scholar 

  72. I.H. Bell, G. Galliero, S. Delage Santacreu, L. Costigliola, J. Chem. Phys. (2020). https://doi.org/10.1063/1.5143854

    Article  Google Scholar 

  73. E.W. Lemmon, R.T. Jacobsen, Int. J. Thermophys. 25(1), 21 (2004). https://doi.org/10.1023/B:IJOT.0000022327.04529.f3

    Article  ADS  Google Scholar 

  74. A. Laesecke, C.D. Muzny, J. Phys. Chem. Ref. Data 46(1), 013107 (2017). https://doi.org/10.1063/1.4977429

    Article  ADS  Google Scholar 

  75. I.H. Bell, S. Delage-Santacreu, H. Hoang, G. Galliero, J. Phys. Chem. Lett. (2021). https://doi.org/10.1021/acs.jpclett.1c01594

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Ala Bazyleva (of NIST) for assistance with Russian language publications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian H. Bell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic file 1 (CSV 137 kb)

Appendix A: Derivation of High-Temperature Limit

Appendix A: Derivation of High-Temperature Limit

The second virial coefficient is defined by

$$\begin{aligned} B_2 = -2\pi \int _{0}^{\infty } [(\exp (-\beta V(r))-1)r^2] \mathrm{d} r \end{aligned}$$
(18)

where V(r) is the potential, and \(\beta =1/(k_\mathrm{B}T)\). The product \(\beta V\) is dimensionless. Any potential that is finitely valued in the entire domain of integration has the infinite temperature limit

$$\begin{aligned} \boxed {\lim _{\beta \rightarrow 0}n_\mathrm{eff}= \frac{3}{2}} \end{aligned}$$
(19)

where

$$\begin{aligned} n_\mathrm{eff}= -3\frac{B_2-\beta \dfrac{\mathrm{d} B_2}{\mathrm{d} \beta } }{\beta ^2 \dfrac{\mathrm{d} ^2B_2}{\mathrm{d} \beta ^2} } \end{aligned}$$
(20)

The derivation begins with substitution for \(B_2\), yielding

$$\begin{aligned} n_\mathrm{eff}= -3\frac{-2\pi \int [(\exp (-\beta V)-1)r^2] \mathrm{d} r-2\pi \int \beta V\exp (-\beta V)r^2 \mathrm{d} r}{-2\pi \int (\beta V)^2\exp (-\beta V)r^2 \mathrm{d} r} \end{aligned}$$
(21)

and after joining terms

$$\begin{aligned} n_\mathrm{eff}= -3\frac{\int [(1+\beta V)\exp (-\beta V)-1]r^2 \mathrm{d} r}{\int (\beta V)^2\exp (-\beta V)r^2 \mathrm{d} r} \end{aligned}$$
(22)

which has an indefinite form for \(\beta \rightarrow 0\). In this case, two applications of de l’Hôpital’s rule are required, such that

$$\begin{aligned} \lim _{\beta \rightarrow 0}n_\mathrm{eff}= -3\lim _{\beta \rightarrow 0}\frac{\frac{ \mathrm{d} ^2}{ \mathrm{d} ^2 \beta ^2}\int [(1+\beta V)\exp (-\beta V)-1]r^2 \mathrm{d} r}{\frac{ \mathrm{d} ^2}{ \mathrm{d} ^2 \beta ^2}\int (\beta V)^2\exp (-\beta V)r^2 \mathrm{d} r} \end{aligned}$$
(23)

or

$$\begin{aligned} \lim _{\beta \rightarrow 0}n_\mathrm{eff}= -3\lim _{\beta \rightarrow 0}\frac{\int [V^2(\beta V - 1)\exp (-\beta V)]r^2 \mathrm{d} r}{\int V^2(V^2\beta ^2 - 4V\beta + 2)\exp (-V \beta )r^2 \mathrm{d} r}, \end{aligned}$$
(24)

and finally yielding

$$\begin{aligned} \lim _{\beta \rightarrow 0}n_\mathrm{eff}= -3\lim _{\beta \rightarrow 0}\frac{\int -V^2r^2 \mathrm{d} r}{\int 2V^2r^2 \mathrm{d} r} = \frac{3}{2} \end{aligned}$$
(25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polychroniadou, S., Antoniadis, K.D., Assael, M.J. et al. A Reference Correlation for the Viscosity of Krypton From Entropy Scaling. Int J Thermophys 43, 6 (2022). https://doi.org/10.1007/s10765-021-02927-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02927-5

Keywords

Navigation