Skip to main content

Advertisement

Log in

Simultaneous voltammetric detection of 5-hydroxyindole-3-acetic acid and 5-hydroxytryptamine using a glassy carbon electrode modified with conducting polymer and platinised carbon nanofibers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a method for simultaneous voltammetric determination of 5-hydroxytryptamine (serotonin; 5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). A glassy carbon electrode was modified with poly(pyrrole-3-carboxylic acid) and with platinised carbon nanofibers to obtain a sensor that can quantify 5-HT and 5-HIAA with detection limits of 10 nM and 20 nM, respectively. The peak currents, best measured at voltages of 170 mV and 500 mV (vs. Ag/AgCl) for 5-HT and 5-HIAA, increase linearly in the 0.01–100 μM concentration range for both analytes. The method was successfully applied to the quantitation of 5-HT and 5-HIAA in spiked artificial urine samples, and the sensor can be used up to 10 days.

A new electroanalytical device was developed for separation and quantitation of 5-hydroxytryptamine (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA), based on stripping square wave voltammetry, exploiting conducting polymer surfaces on platinised carbon nanofiber supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Houghton LA, Atkinson W, Whitaker RP et al (2003) Increased platelet depleted plasma 5-hydroxytryptamine concentration following meal ingestion in symptomatic female subjects with diarrhoea predominant irritable bowel syndrome. Gut 52:663–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Some M, Helander A (2002) Urinary excretion patterns of 5-hydroxyindole-3-acetic acid and 5-hydroxytryptophol in various animal species: implications for studies on serotonin metabolism and turnover rate. Life Sci 71:2341–2349

    Article  CAS  PubMed  Google Scholar 

  3. Garver DL, Davis JM (1979) Biogenic amine hypotheses of affective disorders. Life Sci 24:383–394

    Article  CAS  PubMed  Google Scholar 

  4. Wang Z, Liang Q, Wang Y, Luo G (2003) Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J Electroanal Chem 540:129–134. https://doi.org/10.1016/S0022-0728(02)01300-1

    Article  CAS  Google Scholar 

  5. Zen JM, Chen IL, Shih Y (1998) Voltammetric determination of serotonin in human blood using a chemically modified electrode. Anal Chim Acta 369:103–108

    Article  CAS  Google Scholar 

  6. Chatzittofis A, Nordström P, Hellström C, Arver S, Åsberg M, Jokinen J (2013) CSF 5-HIAA, cortisol and DHEAS levels in suicide attempters. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 23:1280–1287. https://doi.org/10.1016/j.euroneuro.2013.02.002

    Article  CAS  Google Scholar 

  7. Moberg T, Nordström P, Forslund K, Kristiansson M, Åsberg M, Jokinen J (2011) CSF 5-HIAA and exposure to and expression of interpersonal violence in suicide attempters. J Affect Disord 132:173–178. https://doi.org/10.1016/j.jad.2011.01.018

    Article  CAS  PubMed  Google Scholar 

  8. Goyal RN, Oyama M, Gupta VK, Singh SP, Sharma RA (2008) Sensors for 5-hydroxytryptamine and 5-hydroxyindole acetic acid based on nanomaterial modified electrodes. Sens Actuators B Chem 134:816–821. https://doi.org/10.1016/j.snb.2008.06.027

    Article  CAS  Google Scholar 

  9. Tormey WP, FitzGerald RJ (1995) The clinical and laboratory correlates of an increased urinary 5-hydroxyindoleacetic acid. Postgrad Med J 71:542–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Banik S, Lahiri T (2000) Increase in brain serotonin level and concomitant reduction in food intake and body weight of mice bearing chemically - induced Fibrosarcoma. Biomed Res 21:255–261. https://doi.org/10.2220/biomedres.21.255

    Article  CAS  Google Scholar 

  11. Dursun SM, Whitaker RP, Andrews H, Reveley MA (1999) Effects of natural ageing on plasma 5-HT turnover in humans. Hum Psychopharmacol Clin Exp 12:365–367. https://doi.org/10.1002/(SICI)1099-1077(199707/08)12:4<365::AID-HUP879>3.0.CO;2-2

    Article  Google Scholar 

  12. Xu H, Zhang W, Wang D, Zhu W, Jin L (2007) Simultaneous determination of 5-hydroxyindoleacetic acid and 5-hydroxytryptamine in urine samples from patients with acute appendicitis by liquid chromatography using poly(bromophenol blue) film modified electrode. J Chromatogr B Analyt Technol Biomed Life Sci 846:14–19. https://doi.org/10.1016/j.jchromb.2006.08.021

    Article  CAS  PubMed  Google Scholar 

  13. Nohta H, Yukizawa T, Ohkura Y, Yoshimura M, Ishida J, Yamaguchi M (1997) Aromatic glycinonitriles and methylamines as pre-column fluorescence derivatization reagents for catecholamines. Anal Chim Acta 344:233–240. https://doi.org/10.1016/S0003-2670(96)00614-9

    Article  CAS  Google Scholar 

  14. Zhang L, Zhao Y, Huang J, Zhao S (2014) Simultaneous quantification of 5-hydroxyindoleacetic acid and 5-hydroxytryptamine by capillary electrophoresis with quantum dot and horseradish peroxidase enhanced chemiluminescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 967:190–194. https://doi.org/10.1016/j.jchromb.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  15. Moriarty M, Lee A, O’Connell B, Kelleher A, Keeley H, Furey A (2011) Development of an LC-MS/MS method for the analysis of serotonin and related compounds in urine and the identification of a potential biomarker for attention deficit hyperactivity/hyperkinetic disorder. Anal Bioanal Chem 401:2481–2493. https://doi.org/10.1007/s00216-011-5322-7

    Article  CAS  PubMed  Google Scholar 

  16. Bracamonte AG, Veglia AV (2011) Spectrofluorimetric determination of serotonin and 5-hydroxyindoleacetic acid in urine with different cyclodextrin media. Talanta 83:1006–1013. https://doi.org/10.1016/j.talanta.2010.11.013

    Article  CAS  PubMed  Google Scholar 

  17. Adams RN (1976) Probing brain chemistry with electroanalytical techniques. Anal Chem 48:1126A–1138A. https://doi.org/10.1021/ac50008a001

    Article  CAS  PubMed  Google Scholar 

  18. Leszczyszyn DJ, Jankowski JA, Viveros OH et al (1990) Nicotinic receptor-mediated catecholamine secretion from individual chromaffin cells. Chemical evidence for exocytosis J Biol Chem 265:14736–14737

    CAS  PubMed  Google Scholar 

  19. Mozaffari SA, Chang T, Park S-M (2010) Self-assembled monolayer as a pre-concentrating receptor for selective serotonin sensing. Biosens Bioelectron 26:74–79. https://doi.org/10.1016/j.bios.2010.05.015

    Article  CAS  PubMed  Google Scholar 

  20. Liu M, Crussière M, Hélard JF (2010) Enhanced two-dimensional data-aided channel estimation for TDS-OFDM. In: 2010 4th international conference on signal processing and communication systems. Pp 1–7

  21. Wang F, Wu Y, Lu K, Ye B (2013) A simple but highly sensitive and selective calixarene-based voltammetric sensor for serotonin. Electrochim Acta 87:756–762. https://doi.org/10.1016/j.electacta.2012.09.033

    Article  CAS  Google Scholar 

  22. Zhao H, Bian X, Galligan JJ, Swain GM (2010) Electrochemical measurements of serotonin (5-HT) release from the Guinea pig mucosa using continuous amperometry with a boron-doped diamond microelectrode. Diam Relat Mater 19:182–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ran G, Chen C, Gu C (2015) Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly(p-aminobenzenesulfonate). Microchim Acta 182:1323–1328. https://doi.org/10.1007/s00604-015-1454-3

    Article  CAS  Google Scholar 

  24. Gomez FJV, Martín A, Silva MF, Escarpa A (2015) Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin. Microchim Acta 182:1925–1931. https://doi.org/10.1007/s00604-015-1520-x

    Article  CAS  Google Scholar 

  25. Sharma S, Singh N, Tomar V, Chandra R (2018) A review on electrochemical detection of serotonin based on surface modified electrodes. Biosens Bioelectron 107:76–93. https://doi.org/10.1016/j.bios.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  26. Makrlíková A, Ktena E, Economou A, Fischer J, Navrátil T, Barek J, Vyskočil V (2016) Voltammetric determination of tumor biomarkers for Neuroblastoma (Homovanillic acid, Vanillylmandelic acid, and 5-Hydroxyindole-3-acetic acid) at screen-printed carbon electrodes. Electroanalysis 29:146–153. https://doi.org/10.1002/elan.201600534

    Article  CAS  Google Scholar 

  27. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface 7:S559–S579. https://doi.org/10.1098/rsif.2010.0120.focus

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brooks T, Keevil CW (1997) A simple artificial urine for the growth of urinary pathogens. Lett Appl Microbiol 24:203–206

    Article  CAS  PubMed  Google Scholar 

  29. Singh B, Dempsey E, Dickinson C, Laffir F (2012) Inside/outside Pt nanoparticles decoration of functionalised carbon nanofibers (Pt19.2/f-CNF80.8) for sensitive non-enzymatic electrochemical glucose detection. Analyst 137:1639–1648. https://doi.org/10.1039/C2AN16146J

    Article  CAS  PubMed  Google Scholar 

  30. Singh B, Dempsey E (2013) Exceptional Pt nanoparticle decoration of functionalised carbon nanofibers: a strategy to improve the utility of Pt and support material for direct methanol fuel cell applications. RSC Adv 3:2279–2287. https://doi.org/10.1039/C2RA21862C

    Article  CAS  Google Scholar 

  31. Dinesh B, Veeramani V, Chen S-M, Saraswathi R (2017) In situ electrochemical synthesis of reduced graphene oxide-cobalt oxide nanocomposite modified electrode for selective sensing of depression biomarker in the presence of ascorbic acid and dopamine. J Electroanal Chem 786:169–176. https://doi.org/10.1016/j.jelechem.2017.01.022

    Article  CAS  Google Scholar 

  32. Swamy BEK, Venton BJ (2007) Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst 132:876–884. https://doi.org/10.1039/b705552h

    Article  CAS  PubMed  Google Scholar 

  33. Antuña-Jiménez D, Blanco-López MC, Miranda-Ordieres AJ, Lobo-Castañón MJ (2015) Artificial enzyme-based catalytic sensor for the electrochemical detection of 5-hydroxyindole-3-acetic acid tumor marker in urine. Sens Actuators B Chem 220:688–694. https://doi.org/10.1016/j.snb.2015.05.109

    Article  CAS  Google Scholar 

  34. Satyanarayana M, Koteshwara Reddy K, Vengatajalabathy Gobi K (2014) Nanobiocomposite Based Electrochemical Sensor for Sensitive Determination of Serotonin in Presence of Dopamine, Ascorbic Acid and Uric Acid In Vitro. Electroanalysis 26:2365–2372. https://doi.org/10.1002/elan.201400243

    Article  CAS  Google Scholar 

  35. Anithaa AC, Asokan K, Sekar C (2017) Highly sensitive and selective serotonin sensor based on gamma ray irradiated tungsten trioxide nanoparticles. https://doi.org/10.1016/j.snb.2016.07.098

  36. Wang Y, Wang S, Tao L, Min Q, Xiang J, Wang Q, Xie J, Yue Y, Wu S, Li X, Ding H (2015) A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode. Biosens Bioelectron 65:31–38. https://doi.org/10.1016/j.bios.2014.09.099

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the “SMARTCANCERSENS” project Marie Curie IRSES staff exchange programme - Grant Agreement PIRSES-GA 2012-318053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eithne Dempsey.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2013 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fredj, Z., Ali, M., Singh, B. et al. Simultaneous voltammetric detection of 5-hydroxyindole-3-acetic acid and 5-hydroxytryptamine using a glassy carbon electrode modified with conducting polymer and platinised carbon nanofibers. Microchim Acta 185, 412 (2018). https://doi.org/10.1007/s00604-018-2949-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2949-5

Keywords

Navigation