Skip to main content
Log in

There’s plenty of gloom at the bottom: the many challenges of accurate quantitation in size-based oligomeric separations

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

There is a variety of small-molecule species (e.g., tackifiers, plasticizers, oligosaccharides) the size-based characterization of which is of considerable scientific and industrial importance. Likewise, quantitation of the amount of oligomers in a polymer sample is crucial for the import and export of substances into the USA and European Union (EU). While the characterization of ultra-high molar mass macromolecules by size-based separation techniques is generally considered a challenge, it is this author’s contention that a greater challenge is encountered when trying to perform, for quantitation purposes, separations in and of the oligomeric region. The latter thesis is expounded herein, by detailing the various obstacles encountered en route to accurate, quantitative oligomeric separations by entropically dominated techniques such as size-exclusion chromatography, hydrodynamic chromatography, and asymmetric flow field-flow fractionation, as well as by methods which are, principally, enthalpically driven such as liquid adsorption and temperature gradient interaction chromatography. These obstacles include, among others, the diminished sensitivity of static light scattering (SLS) detection at low molar masses, the non-constancy of the response of SLS and of commonly employed concentration-sensitive detectors across the oligomeric region, and the loss of oligomers through the accumulation wall membrane in asymmetric flow field-flow fractionation. The battle is not lost, however, because, with some care and given a sufficient supply of sample, the quantitation of both individual oligomeric species and of the total oligomeric region is often possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Striegel AM, Isenberg SL, Côté GL (2009) Anal Bioanal Chem 394:1887–1893

    Article  CAS  Google Scholar 

  2. Isenberg SL, Brewer AK, Côté GL, Striegel AM (2010) Biomacromolecules 11:2505–2511

    Article  CAS  Google Scholar 

  3. Brewer AK, Striegel AM (2011) Anal Chem 83:3068–3075

    Article  CAS  Google Scholar 

  4. Striegel AM (2012) Anal Bioanal Chem 402:77–81

    Article  CAS  Google Scholar 

  5. Striegel AM, Brewer AK (2012) Annu Rev Anal Chem 5:15–34

    Article  CAS  Google Scholar 

  6. Podzimek S (2011) Light scattering, size exclusion chromatography and asymmetric flow field flow fractionation. Wiley, Hoboken

    Book  Google Scholar 

  7. Williams SKR, Caldwell KD (eds) (2012) Field-flow fractionation in biopolymer analysis. Springer, Vienna

    Google Scholar 

  8. US EPA (1997) Polymer exemption guidance manual, EPA 744-B-97-001. US EPA, Washington, DC

    Google Scholar 

  9. Striegel AM, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  10. Buley TD, Striegel AM (2010) Carbohydr Polym 79:241–249

    Article  CAS  Google Scholar 

  11. Uliyanchenko E, van der Wal S, Schoenmakers PJ (2012) Polym Chem 3:2313–2335

    Article  CAS  Google Scholar 

  12. Pasch H (2013) Polym Chem 4:2628–2650

    Article  CAS  Google Scholar 

  13. Berek D (2010) Anal Bioanal Chem 396:421–441

    Article  CAS  Google Scholar 

  14. Striegel AM (2013) In: Fanali S, Haddad PR, Poole CF, Schoenmakers P, Lloyd D (eds) Liquid chromatography: fundamentals and instrumentation. Elsevier, Amsterdam, pp 193–223

    Chapter  Google Scholar 

  15. Wyatt PJ (1993) Anal Chim Acta 272:1–40

    Article  CAS  Google Scholar 

  16. Striegel AM (2005) Anal Chem 77:104A–113A

    Article  CAS  Google Scholar 

  17. Brewer AK, Striegel AM (2011) Anal Bioanal Chem 399:1507–1514

    Article  CAS  Google Scholar 

  18. Striegel AM, Timpa JD (1996) In: Potschka M, Dubin PL (eds) Strategies in size exclusion chromatography (ACS Symp Ser 635). American Chemical Society, Washington, DC, pp 366–378

    Chapter  Google Scholar 

  19. Striegel AM (ed) (2005) Multiple detection in size-exclusion chromatography (ACS Symp Ser 893). American Chemical Society, Washington, DC

  20. Striegel AM, Alward DB (2002) J Liq Chromatogr Rel Technol 25:2003–2022, [see erratum in Striegel AM, Alward DB (2003) J Liq Chromatogr Rel Technol 26:157–158, in which there is a typo: The value of [η]w for PE 282 in TCB at 135 °C should be +0.0036 dL g−1)

    Article  CAS  Google Scholar 

  21. Haidar Ahmad IA, Striegel AM (2009) Instrum Sci Technol 37:574–583

    Article  CAS  Google Scholar 

  22. Haidar Ahmad IA, Striegel AM (2010) Anal Bioanal Chem 396:1589–1598

    Article  CAS  Google Scholar 

  23. Haidar Ahmad IA, Striegel DA, Striegel AM (2011) Polymer 52:1268–1277

    Article  CAS  Google Scholar 

  24. Rowland SM, Striegel AM (2012) Anal Chem 84:4812–4820

    Article  CAS  Google Scholar 

  25. Podzimek S (2005) In: Striegel AM (ed) Multiple detection in size-exclusion chromatography (ACS Symp Ser 893). American Chemical Society, Washington, DC, pp 94–112

    Google Scholar 

  26. Gridnev AA, Ittel SD, Fryd M (1995) J Polym Sci A 33:1185–1188

    Article  CAS  Google Scholar 

  27. Mourey TH (2004) Int J Polym Anal Charact 9:97–135

    Article  CAS  Google Scholar 

  28. Henry C (1997) Anal Chem 69:561A–563A

    Article  CAS  Google Scholar 

  29. Hiller W, Hehn M, Sinha P, Raust J-A, Pasch H (2012) Macromolecules 45:7740–7748

    Article  CAS  Google Scholar 

  30. Trathnigg B, Jorde C (1987) J Chromatogr 385:17–23

    Article  CAS  Google Scholar 

  31. Trathnigg B (2006) In: Meyers RA (ed) Encyclopedia of analytical chemistry. New York, Wiley

    Google Scholar 

  32. Nielsen LE (1978) Predicting the properties of mixtures. Marcel Dekker, New York

    Google Scholar 

  33. Sabadini E, Cosgrove T, do Carmo Egídio F (2006) Carbohydr Res 341:270–274

    Article  CAS  Google Scholar 

  34. Boone MA, Nymeyer H, Striegel AM (2008) Carbohydr Res 343:132–138

    Article  CAS  Google Scholar 

  35. Yamada T, Koyama H, Yoshizaki T, Einaga Y, Yamakawa H (1993) Macromolecules 26:2566–2574

    Article  CAS  Google Scholar 

  36. Kojo H, Osa M, Yoshizaki T, Yamakawa H (2003) Macromolecules 36:6570–6576

    Article  CAS  Google Scholar 

  37. Striegel AM (2005) In: Striegel AM (ed) Multiple detection in size-exclusion chromatography (ACS Symp Ser 893). American Chemical Society, Washington, DC, pp 76–93

    Google Scholar 

  38. Andreatta G, Bostrom N, Mullins OC (2005) Langmuir 21(7):2728–2736

    Article  CAS  Google Scholar 

  39. Dong S, Striegel AM (2013) Chromatographia 76:725–733

    Google Scholar 

  40. Chang T (2005) J Polym Sci B Polym Phys 43:1591–1607

    Article  CAS  Google Scholar 

  41. Kim Y, Ahn S, Chang T (2009) Anal Chem 81:5902–5909

    Article  CAS  Google Scholar 

  42. Berek D (2003) Chromatography Suppl 57:S45–S54

    Article  Google Scholar 

  43. Šnauko M, Berek D, Hunkeler D (2005) J Chromatogr A 1084:173–179

    Article  Google Scholar 

  44. Chang T, Lee HC, Lee W, Park S, Ko C (1999) Macromol Chem Phys 200:2188–2204

    Article  CAS  Google Scholar 

  45. Uglea CV (1996) Liquid chromatography of oligomers (Chromatogr Sci Ser 72). Marcel Dekker, New York

    Google Scholar 

Download references

Acknowledgements and disclaimer

The author is most grateful to Drs. Benjamín Monrabal (Polymer Char) and Aaron Urbas (NIST) for helpful discussions regarding IR detection, and to Dr. Katrice Lippa (NIST) for helpful discussions regarding NMR detection. Commercial products are identified to specify adequately the experimental procedure. Such identification does not imply endorsement or recommendation by the National Institute of Standards and Technology, nor does it imply that the materials identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André M. Striegel.

Additional information

Published in the topical collection Separation and Characterization of Natural and Synthetic Macromolecules with guest editors Albena Lederer and Peter J. Schoenmakers.

A. M. Striegel -with apologies to the late R. P. Feynman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Striegel, A.M. There’s plenty of gloom at the bottom: the many challenges of accurate quantitation in size-based oligomeric separations. Anal Bioanal Chem 405, 8959–8967 (2013). https://doi.org/10.1007/s00216-013-7198-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7198-1

Keywords

Navigation