Skip to main content
Log in

Renormalization group approach to matrix models via noncommutative space

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We develop a new renormalization group approach to the large-N limit of matrix models. It has been proposed that a procedure, in which a matrix model of size (N − 1) × (N − 1) is obtained by integrating out one row and column of an N × N matrix model, can be regarded as a renormalization group and that its fixed point reveals critical behavior in the large-N limit. We instead utilize the fuzzy sphere structure based on which we construct a new map (renormalization group) from N × N matrix model to that of rank N − 1. Our renormalization group has great advantage of being a nice analog of the standard renormalization group in field theory. It is naturally endowed with the concept of high/low energy, and consequently it is in a sense local and admits derivative expansions in the space of matrices. In construction we also find that our renormalization in general generates multi-trace operators, and that nonplanar diagrams yield a nonlocal operation on a matrix, whose action is to transport the matrix to the antipode on the sphere. Furthermore the noncommutativity of the fuzzy sphere is renormalized in our formalism. We then analyze our renormalization group equation, and Gaussian and nontrivial fixed points are found. We further clarify how to read off scaling dimensions from our renormalization group equation. Finally the critical exponent of the model of two-dimensional gravity based on our formalism is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Knizhnik, A.M. Polyakov and A. Zamolodchikov, Fractal Structure of 2D Quantum Gravity, Mod. Phys. Lett. A 3 (1988) 819 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. F. David, Conformal Field Theories Coupled to 2D Gravity in the Conformal Gauge, Mod. Phys. Lett. A 3 (1988) 1651 [INSPIRE].

    Article  ADS  Google Scholar 

  3. J. Distler and H. Kawai, Conformal Field Theory and 2D Quantum Gravity Or Whos Afraid of Joseph Liouville?, Nucl. Phys. B 321 (1989) 509 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. E. Brézin and V. Kazakov, Exactly solvable field theories of closed strings, Phys. Lett. B 236 (1990) 144 [INSPIRE].

    Article  ADS  Google Scholar 

  5. M.R. Douglas and S.H. Shenker, Strings in Less Than One-Dimension, Nucl. Phys. B 335 (1990) 635 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. D.J. Gross and A.A. Migdal, Nonperturbative Two-Dimensional Quantum Gravity, Phys. Rev. Lett. 64 (1990) 127 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M.R. Douglas, Strings in less than one-dimension and the generalized k-d-v hierarchies, Phys. Lett. B 238 (1990) 176 [INSPIRE].

    Article  ADS  Google Scholar 

  8. T. Banks, W. Fischler, S. Shenker and L. Susskind, M theory as a matrix model: A Conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Matrix string theory, Nucl. Phys. B 500 (1997) 43 [hep-th/9703030] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  12. K. Wilson and J.B. Kogut, The renormalization group and the ǫ-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  13. E. Brézin and J. Zinn-Justin, Renormalization group approach to matrix models, Phys. Lett. B 288 (1992) 54 [hep-th/9206035] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Higuchi, C. Itoi and N. Sakai, Exact β-functions in the vector model and renormalization group approach, Phys. Lett. B 312 (1993) 88 [hep-th/9303090] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Higuchi, C. Itoi, S. Nishigaki and N. Sakai, Nonlinear renormalization group equation for matrix models, Phys. Lett. B 318 (1993) 63 [hep-th/9307116] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Higuchi, C. Itoi, S. Nishigaki and N. Sakai, Renormalization group flow in one and two matrix models, Nucl. Phys. B 434 (1995) 283 [Erratum ibid. B 441 (1995) 405] [hep-th/9409009] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Higuchi, C. Itoi, S.M. Nishigaki and N. Sakai, Renormalization group approach to multiple arc random matrix models, Phys. Lett. B 398 (1997) 123 [hep-th/9612237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Hoppe, Quantum Theory of A Massless Relativistic Surface and A Two-Dimensional Bound State Problem, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge U.S.A. (1982).

  19. B. de Wit, J. Hoppe and H. Nicolai, On the Quantum Mechanics of Supermembranes, Nucl. Phys. B 305 (1988) 545 [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Hoppe, Diffeomorphism groups, quantization and SU(infinity), Int. J. Mod. Phys. A 4 (1989) 5235 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. J. Madore, The Fuzzy sphere, Class. Quant. Grav. 9 (1992) 69 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. X. Martin, A matrix phase for the φ4 scalar field on the fuzzy sphere, JHEP 04 (2004) 077 [hep-th/0402230] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Panero, Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere, JHEP 05 (2007) 082 [hep-th/0608202] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. C. Das, S. Digal and T. Govindarajan, Finite temperature phase transition of a single scalar field on a fuzzy sphere, Mod. Phys. Lett. A 23 (2008) 1781 [arXiv:0706.0695] [INSPIRE].

    Article  ADS  Google Scholar 

  25. H. Steinacker, A non-perturbative approach to non-commutative scalar field theory, JHEP 03 (2005) 075 [hep-th/0501174] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Iso, Y. Kimura, K. Tanaka and K. Wakatsuki, Noncommutative gauge theory on fuzzy sphere from matrix model, Nucl. Phys. B 604 (2001) 121 [hep-th/0101102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Narayan, Blocking up D-branes: matrix renormalization?, hep-th/0211110 [INSPIRE].

  28. S. Vaidya, Perturbative dynamics on the fuzzy S 2 and RP 2, Phys. Lett. B 512 (2001) 403 [hep-th/0102212] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. D.A. Varshalovich, A.N. Moskalev and V.K. Khersonsky, Quantum Theory Of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols, World Scientific, Singapore (1988).

    Book  Google Scholar 

  30. H. Kawai, T. Kuroki and T. Morita, Dijkgraaf-Vafa theory as large-N reduction, Nucl. Phys. B 664 (2003) 185 [hep-th/0303210] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [INSPIRE].

    Article  ADS  Google Scholar 

  32. R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. C.-S. Chu, J. Madore and H. Steinacker, Scaling limits of the fuzzy sphere at one loop, JHEP 08 (2001) 038 [hep-th/0106205] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. T. Azuma, S. Bal and J. Nishimura, Dynamical generation of gauge groups in the massive Yang-Mills-Chern-Simons matrix model, Phys. Rev. D 72 (2005) 066005 [hep-th/0504217] [INSPIRE].

    ADS  Google Scholar 

  36. T. Aoyama, T. Kuroki and Y. Shibusa, Dynamical generation of non-Abelian gauge group via the improved perturbation theory, Phys. Rev. D 74 (2006) 106004 [hep-th/0608031] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. T. Ishii, G. Ishiki, S. Shimasaki and A. Tsuchiya, N = 4 Super Yang-Mills from the Plane Wave Matrix Model, Phys. Rev. D 78 (2008) 106001 [arXiv:0807.2352] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. T. Eguchi and H. Kawai, Reduction of Dynamical Degrees of Freedom in the Large-N Gauge Theory, Phys. Rev. Lett. 48 (1982) 1063 [INSPIRE].

    Article  ADS  Google Scholar 

  39. T. Kuroki, Master field on fuzzy sphere, Nucl. Phys. B 543 (1999) 466 [hep-th/9804041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Van Raamsdonk and N. Seiberg, Comments on noncommutative perturbative dynamics, JHEP 03 (2000) 035 [hep-th/0002186] [INSPIRE].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichi Kawamoto.

Additional information

ArXiv ePrint: 1206.0574

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawamoto, S., Kuroki, T. & Tomino, D. Renormalization group approach to matrix models via noncommutative space. J. High Energ. Phys. 2012, 168 (2012). https://doi.org/10.1007/JHEP08(2012)168

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)168

Keywords

Navigation