Skip to main content

The Use of Electrospinning Technique on Osteochondral Tissue Engineering

  • Chapter
  • First Online:
Book cover Osteochondral Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1058))

Abstract

Electrospinning, an electrostatic fiber fabrication technique, has attracted significant interest in recent years due to its versatility and ability to produce highly tunable nanofibrous meshes. These nanofibrous meshes have been investigated as promising tissue engineering scaffolds since they mimic the scale and morphology of the native extracellular matrix. The sub-micron diameter of fibers produced by this process presents various advantages like the high surface area to volume ratio, tunable porosity, and the ability to manipulate the nanofiber composition in order to get desired properties and functionality. Electrospun fibers can be oriented or arranged randomly, giving control over both mechanical properties and the biological response to the fibrous scaffold. Moreover, bioactive molecules can be integrated with the electrospun nanofibrous scaffolds in order to improve the cellular response. This chapter presents an overview of the developments on electrospun polymer nanofibers including processing, structure, and their applications in the field of osteochondral tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martins A, Reis RL, Neves NM (2008) Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev 53(5):257–274. https://doi.org/10.1179/174328008x353547

    Article  CAS  Google Scholar 

  2. Rajesh KP, Natarajan TS (2009) Electrospun polymer nanofibrous membrane for filtration. J Nanosci Nanotechnol 9(9):5402–5405

    Article  CAS  Google Scholar 

  3. Beringer LT, Xu X, Shih W, Shih WH, Habas R, Schauer CL (2015) An electrospun PVDF-TrFe fiber sensor platform for biological applications. Sensor Actuat A Phys 222:293–300. https://doi.org/10.1016/j.sna.2014.11.012

    Article  CAS  Google Scholar 

  4. Smith LA, Ma PX (2004) Nano-fibrous scaffolds for tissue engineering. Colloid Surf B 39(3):125–131. https://doi.org/10.1016/j.colsurfb.2003.12.004

    Article  CAS  Google Scholar 

  5. Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL, Neves NM (2009) Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small 5(10):1195–1206. https://doi.org/10.1002/smll.200801648

    Article  CAS  PubMed  Google Scholar 

  6. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578. https://doi.org/10.1021/ma0351975

    Article  CAS  Google Scholar 

  7. Araujo JV, Martins A, Leonor IB, Pinho ED, Reis RL, Neves NM (2008) Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues. J Biomater Sci Polym E 19(10):1261–1278. https://doi.org/10.1163/156856208786052335

    Article  CAS  Google Scholar 

  8. da Silva MA, Crawford A, Mundy J, Martins A, Araujo JV, Hatton PV, Reis RL, Neves NM (2009) Evaluation of extracellular matrix formation in polycaprolactone and starch-compounded polycaprolactone nanofiber meshes when seeded with bovine articular chondrocytes. Tissue Eng Part A 15(2):377–385. https://doi.org/10.1089/ten.tea.2007.0327

    Article  PubMed  Google Scholar 

  9. Rezvani Z, Venugopal JR, Urbanska AM, Mills DK, Ramakrishna S, Mozafari M (2016) A bird’s eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: current state-of-the-art, emerging directions and future trends. Nanomedicine 12(7):2181–2200. https://doi.org/10.1016/j.nano.2016.05.014

    Article  CAS  PubMed  Google Scholar 

  10. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35(2-3):151–160. https://doi.org/10.1016/0304-3886(95)00041-8

    Article  CAS  Google Scholar 

  11. Ganan-Calvo AM, Davila J, Barrero A (1997) Current and droplet size in the electrospraying of liquids. Scaling laws. J Aerosol Sci 28(2):249–275. https://doi.org/10.1016/S0021-8502(96)00433-8

    Article  CAS  Google Scholar 

  12. Formhals A (1934) Method and apparatus for spinning. US patent 1975504

    Google Scholar 

  13. Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloid Surf A 187:469–481. https://doi.org/10.1016/S0927-7757(01)00616-1

    Article  Google Scholar 

  14. Ghorani B, Tucker N (2015) Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloid 51:227–240. https://doi.org/10.1016/j.foodhyd.2015.05.024

    Article  CAS  Google Scholar 

  15. Taylor G (1964) Disintegration of water drops in an electric field. Proc R Soc Lond Ser A Math Phys Sci 280(1382):383–397. https://doi.org/10.1098/rspa.1964.0151

    Article  Google Scholar 

  16. Dabirian F, Ravandi SAH, Pishevar AR, Abuzade RA (2011) A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems. J Electrost 69(6):540–546. https://doi.org/10.1016/j.elstat.2011.07.006

    Article  Google Scholar 

  17. Li D, Wang YL, Xia YN (2004) Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 16(4):361–366. https://doi.org/10.1002/adma.200306226

    Article  CAS  Google Scholar 

  18. Sharma N, Jaffari GH, Shah SI, Pochan DJ (2010) Orientation-dependent magnetic behavior in aligned nanoparticle arrays constructed by coaxial electrospinning. Nanotechnology 21(8):85707. https://doi.org/10.1088/0957-4484/21/8/085707

    Article  CAS  PubMed  Google Scholar 

  19. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89–R106. https://doi.org/10.1088/0957-4484/17/14/R01

    Article  CAS  PubMed  Google Scholar 

  20. Bognitzki M, Frese T, Steinhart M, Greiner A, Wendorff JH, Schaper A, Hellwig M (2001) Preparation of fibers with nanoscaled morphologies: electrospinning of polymer blends. Polym Eng Sci 41(6):982–989. https://doi.org/10.1002/pen.10799

    Article  CAS  Google Scholar 

  21. Lee JS, Choi KH, Do Ghim H, Kim SS, Chun DH, Kim HY, Lyoo WS (2004) Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J Appl Polym Sci 93(4):1638–1646. https://doi.org/10.1002/app.20602

    Article  CAS  Google Scholar 

  22. Alves da Silva M, Martins A, Costa-Pinto AR, Monteiro N, Faria S, Reis RL, Neves NM (2017) Electrospun nanofibrous meshes cultured with Wharton’s jelly stem cell: an alternative for cartilage regeneration, without the need of growth factors. Biotechnol J 12. https://doi.org/10.1002/biot.201700073

  23. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272. https://doi.org/10.1016/S0032-3861(00)00250-0

    Article  CAS  Google Scholar 

  24. Deitzel JM, Kleinmeyer JD, Hirvonen JK, Tan NCB (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42(19):8163–8170. https://doi.org/10.1016/S0032-3861(01)00336-6

    Article  CAS  Google Scholar 

  25. Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90(9):4836–4846. https://doi.org/10.1063/1.1408260

    Article  CAS  Google Scholar 

  26. Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22):8456–8466. https://doi.org/10.1021/ma020444a

    Article  CAS  Google Scholar 

  27. Tan SH, Inai R, Kotaki M, Ramakrishna S (2005) Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 46(16):6128–6134. https://doi.org/10.1016/j.polymer.2005.05.068

    Article  CAS  Google Scholar 

  28. Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8(1):64–75. https://doi.org/10.1016/S1359-0294(03)00004-9

    Article  CAS  Google Scholar 

  29. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3):216–223. https://doi.org/10.1088/0957-4484/7/3/009

    Article  CAS  Google Scholar 

  30. Hsu CM, Shivkumar S (2004) Nano-sized beads and porous fiber constructs of poly(epsilon-caprolactone) produced by electrospinning. J Mater Sci 39(9):3003–3013. https://doi.org/10.1023/B:JMSC.0000025826.36080.cf

    Article  CAS  Google Scholar 

  31. Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23):6913–6922. https://doi.org/10.1016/j.polymer.2007.09.017

    Article  CAS  Google Scholar 

  32. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425. https://doi.org/10.1016/j.polymer.2008.02.002

    Article  CAS  Google Scholar 

  33. Geng XY, Kwon OH, Jang JH (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27):5427–5432. https://doi.org/10.1016/j.biomaterials.2005.01.066

    Article  CAS  PubMed  Google Scholar 

  34. Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH (2005) Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer 46(14):5094–5102. https://doi.org/10.1016/j.polymer.2005.04.040

    Article  CAS  Google Scholar 

  35. Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids 13(8):2201–2220. https://doi.org/10.1063/1.1383791

    Article  CAS  Google Scholar 

  36. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39(5):862–890. https://doi.org/10.1016/j.progpolymsci.2013.06.002

    Article  CAS  Google Scholar 

  37. Koski A, Yim K, Shivkumar S (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 58(3–4):493–497. https://doi.org/10.1016/S0167-577x(03)00532-9

    Article  CAS  Google Scholar 

  38. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  39. Brown TD, Daltona PD, Hutmacher DW (2016) Melt electrospinning today: an opportune time for an emerging polymer process. Prog Polym Sci 56:116–166. https://doi.org/10.1016/j.progpolymsci.2016.01.001

    Article  CAS  Google Scholar 

  40. Rodoplu D, Mutlu M (2012) Effects of electrospinning setup and process parameters on nanofiber morphology intended for the modification of quartz crystal microbalance surfaces. J Eng Fiber Fabr 7(2):118–123

    CAS  Google Scholar 

  41. Pelipenko J, Kristl J, Jankovic B, Baumgartner S, Kocbek P (2013) The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. Int J Pharm 456(1):125–134. https://doi.org/10.1016/j.ijpharm.2013.07.078

    Article  CAS  PubMed  Google Scholar 

  42. Dersch R, Liu TQ, Schaper AK, Greiner A, Wendorff JH (2003) Electrospun nanofibers: internal structure and intrinsic orientation. J Polym Sci Pol Chem 41(4):545–553. https://doi.org/10.1002/pola.10609

    Article  CAS  Google Scholar 

  43. Martins A, da Silva MLA, Faria S, Marques AP, Reis RL, Neves NM (2011) The influence of patterned nanofiber meshes on human mesenchymal stem cell osteogenesis. Macromol Biosci 11(7):978–987. https://doi.org/10.1002/mabi.201100012

    Article  CAS  PubMed  Google Scholar 

  44. Martins A, Reis R, Neves N (2012) Critical aspects of electrospun meshes for biomedical applications. In: Neves N (ed) Electrospinning for advanced biomedical applications and therapies, pp 69–87

    Google Scholar 

  45. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3(2):232–238

    Article  CAS  Google Scholar 

  46. Kameoka J, Orth R, Yang YN, Czaplewski D, Mathers R, Coates GW, Craighead HG (2003) A scanning tip electrospinning source for deposition of oriented nanofibres. Nanotechnology 14(10):1124–1129. https://doi.org/10.1088/0957-4484/14/10/310. pii: S0957-4484(03)61381-4

    Article  CAS  Google Scholar 

  47. Zussman E, Rittel D, Yarin AL (2003) Failure modes of electrospun nanofibers. Appl Phys Lett 82(22):3958–3960. https://doi.org/10.1063/1.1579125

    Article  CAS  Google Scholar 

  48. Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27(5):724–734. https://doi.org/10.1016/j.biomaterials.2005.06.024

    Article  CAS  PubMed  Google Scholar 

  49. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed Engl 46(30):5670–5703. https://doi.org/10.1002/anie.200604646

    Article  CAS  PubMed  Google Scholar 

  50. Kidoaki S, Kwon IK, Matsuda T (2005) Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26(1):37–46. https://doi.org/10.1016/j.biomaterials.2004.01.063

    Article  CAS  PubMed  Google Scholar 

  51. Casper CL, Yang WD, Farach-Carson MC, Rabolt JF (2007) Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding. Biomacromolecules 8(4):1116–1123. https://doi.org/10.1021/bm061003s

    Article  CAS  PubMed  Google Scholar 

  52. Li D, Xia YN (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170. https://doi.org/10.1002/adma.200400719

    Article  CAS  Google Scholar 

  53. Malda J, Rouwkema J, Martens DE, le Comte EP, Kooy FK, Tramper J, van Blitterswijk CA, Riesle J (2004) Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling. Biotechnol Bioeng 86(1):9–18. https://doi.org/10.1002/bit.20038

    Article  CAS  PubMed  Google Scholar 

  54. Sun ZC, Zussman E, Yarin AL, Wendorff JH, Greiner A (2003) Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater 15(22):1929. https://doi.org/10.1002/adma.200305136

    Article  CAS  Google Scholar 

  55. Konno M, Kishi Y, Tanaka M, Kawakami H (2014) Core/shell-like structured ultrafine branched nanofibers created by electrospinning. Polym J 46(11):792–799. https://doi.org/10.1038/pj.2014.74

    Article  CAS  Google Scholar 

  56. Shin YM, Kim KS, Lim YM, Nho YC, Shin H (2008) Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly(L-lactide-co-epsilon-caprolactone) substrates. Biomacromolecules 9(7):1772–1781. https://doi.org/10.1021/bm701410g

    Article  CAS  PubMed  Google Scholar 

  57. Sahoo S, Ang LT, Goh JCH, Toh SL (2010) Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A 93a(4):1539–1550. https://doi.org/10.1002/jbm.a.32645

    Article  CAS  Google Scholar 

  58. Martins A, Gang W, Pinho ED, Rebollar E, Chiussi S, Reis RL, Leon B, Neves NM (2010) Surface modification of a biodegradable composite by UV laser ablation: in vitro biological performance. J Tissue Eng Regen Med 4(6):444–453. https://doi.org/10.1002/term.255

    Article  CAS  PubMed  Google Scholar 

  59. Oberbossel G, Probst C, Giampietro VR, von Rohr PR (2017) Plasma afterglow treatment of polymer powders: process parameters, wettability improvement, and aging effects. Plasma Process Polym 14(3):e1600144. https://doi.org/10.1002/ppap.201600144

    Article  CAS  Google Scholar 

  60. Liu W, Zhan JC, Su Y, Wu T, Wu CC, Ramakrishna S, Mo XM, Al-Deyab SS, El-Newehy M (2014) Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology. Colloid Surf B 113:101–106. https://doi.org/10.1016/j.colsurfb.2013.08.031

    Article  CAS  Google Scholar 

  61. Chen F, Tang QL, Zhu YJ, Wang KW, Zhang ML, Zhai WY, Chang JA (2010) Hydroxyapatite nanorods/poly(vinyl pyrolidone) composite nanofibers, arrays and three-dimensional fabrics: electrospun preparation and transformation to hydroxyapatite nanostructures. Acta Biomater 6(8):3013–3020. https://doi.org/10.1016/j.actbio.2010.02.015

    Article  CAS  PubMed  Google Scholar 

  62. Puppi D, Piras AM, Chiellini F, Chiellini E, Martins A, Leonor IB, Neves N, Reis R (2011) Optimized electro- and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. J Tissue Eng Regen Med 5(4):253–263. https://doi.org/10.1002/term.310

    Article  CAS  PubMed  Google Scholar 

  63. Zhang YZ, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29(32):4314–4322. https://doi.org/10.1016/j.biomaterials.2008.07.038

    Article  CAS  PubMed  Google Scholar 

  64. Song JH, Kim HE, Kim HW (2008) Electrospun fibrous web of collagen-apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med 19(8):2925–2932. https://doi.org/10.1007/s10856-008-3420-7

    Article  CAS  PubMed  Google Scholar 

  65. Phipps MC, Clem WC, Catledge SA, Xu Y, Hennessy KM, Thomas V, Jablonsky MJ, Chowdhury S, Stanishevsky AV, Vohra YK, Bellis SL (2011) Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite. PLoS One 6(2):e16813. https://doi.org/10.1371/journal.pone.0016813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xie J, Lou X, Wang X, Yang L, Zhang Y (2015) Electrospun nanofibers of hydroxyapatite/collagen/chitosan promote osteogenic differentiation of the induced pluripotent stem cell-derived mesenchymal stem cells. J Control Release 213:e53. https://doi.org/10.1016/j.jconrel.2015.05.087

    Article  PubMed  Google Scholar 

  67. Zhou Y, Yao H, Wang J, Wang D, Liu Q, Li Z (2015) Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering. Int J Nanomed 10:3203–3215. https://doi.org/10.2147/IJN.S79241

    Article  CAS  Google Scholar 

  68. Kwon GW, Gupta KC, Jung KH, Kang IK (2017) Lamination of microfibrous PLGA fabric by electrospinning a layer of collagen-hydroxyapatite composite nanofibers for bone tissue engineering. Biomater Res 21:11. https://doi.org/10.1186/s40824-017-0097-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Monteiro N, Martins A, Pires R, Faria S, Fonseca NA, Moreira JN, Reisa RL, Neves NM (2014) Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomater Sci 2(9):1195–1209. https://doi.org/10.1039/c4bm00069b

    Article  CAS  Google Scholar 

  70. Zhu Y, Mao ZW, Gao CY (2013) Aminolysis-based surface modification of polyesters for biomedical applications. RSC Adv 3(8):2509–2519. https://doi.org/10.1039/c2ra22358a

    Article  CAS  Google Scholar 

  71. Oliveira C, Costa-Pinto AR, Reis RL, Martins A, Neves NM (2014) Biofunctional nanofibrous substrate comprising immobilized antibodies and selective binding of autologous growth factors. Biomacromolecules 15(6):2196–2205. https://doi.org/10.1021/bm500346s

    Article  CAS  PubMed  Google Scholar 

  72. Piai JF, da Silva MA, Martins A, Torres AB, Faria S, Reis RL, Muniz EC, Neves NM (2017) Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches. Appl Surf Sci 403:112–125. https://doi.org/10.1016/j.apsusc.2016.12.135

    Article  CAS  Google Scholar 

  73. Zhu TH, Yu K, Bhutto MA, Guo XR, Shen W, Wang J, Chen WM, El-Hamshary H, Al-Deyab SS, Mo XM (2017) Synthesis of RGD-peptide modified poly(ester-urethane) urea electrospun nanofibers as a potential application for vascular tissue engineering. Chem Eng J 315:177–190. https://doi.org/10.1016/j.cej.2016.12.134

    Article  CAS  Google Scholar 

  74. Hartman O, Zhang C, Adams EL, Farach-Carson MC, Petrelli NJ, Chase BD, Rabolt JE (2010) Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model. Biomaterials 31(21):5700–5718. https://doi.org/10.1016/j.biomaterials.2010.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim BR, Nguyen TBL, Min YK, Lee BT (2014) In vitro and in vivo studies of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds. Tissue Eng Part A 20(23–24):3279–3289. https://doi.org/10.1089/ten.tea.2014.0081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yin LH, Yang SH, He MM, Chang YC, Wang KJ, Zhu YD, Liu YH, Chang YR, Yu ZH (2017) Physicochemical and biological characteristics of BMP-2/IGF-1-loaded three-dimensional coaxial electrospun fibrous membranes for bone defect repair. J Mater Sci Mater Med 28(6). https://doi.org/10.1007/s10856-017-5898-3

  77. Niu BJ, Li B, Gu Y, Shen XF, Liu Y, Chen L (2017) In vitro evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration. J Biomater Sci Polym E 28(3):257–270. https://doi.org/10.1080/09205063.2016.1262163

    Article  CAS  Google Scholar 

  78. Guex AG, Hegemann D, Giraud MN, Tevaearai HT, Popa AM, Rossi RM, Fortunato G (2014) Covalent immobilisation of VEGF on plasma-coated electrospun scaffolds for tissue engineering applications. Colloid Surf B 123:724–733. https://doi.org/10.1016/j.colsurfb.2014.10.016

    Article  CAS  Google Scholar 

  79. Wang K, Zhang QY, Zhao LQ, Pan YW, Wang T, Zhi DK, Ma SY, Zhang PX, Zhao TC, Zhang SM, Li W, Zhu MF, Zhu Y, Zhang J, Qiao MQ, Kong DL (2017) Functional modification of electrospun poly(epsilon-caprolactone) vascular grafts with the fusion protein VEGF-HGFI enhanced vascular regeneration. ACS Appl Mater Inter 9(13):11415–11427. https://doi.org/10.1021/acsami.6b16713

    Article  CAS  Google Scholar 

  80. Lee H, Lim S, Birajdar MS, Lee SH, Park H (2016) Fabrication of FGF-2 immobilized electrospun gelatin nanofibers for tissue engineering. Int J Biol Macromol 93:1559–1566. https://doi.org/10.1016/j.ijbiomac.2016.07.041

    Article  CAS  PubMed  Google Scholar 

  81. Cui X, Liu MH, Wang JX, Zhou Y, Xiang Q (2015) Electrospun scaffold containing TGF-beta 1 promotes human mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype under hypoxia. IET Nanobiotechnol 9(2):76–84. https://doi.org/10.1049/iet-nbt.2014.0006

    Article  PubMed  Google Scholar 

  82. Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18(4):434–447. https://doi.org/10.1007/s00167-010-1072-x

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gao JZ, Dennis JE, Solchaga LA, Awadallah AS, Goldberg VM, Caplan AI (2001) Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng 7(4):363–371. https://doi.org/10.1089/10763270152436427

    Article  CAS  PubMed  Google Scholar 

  84. Wei J, Herrler T, Liu K, Han D, Yang M, Dai CC, Li QF (2016) The role of cell seeding, bioscaffolds, and the in vivo microenvironment in the guided generation of osteochondral composite tissue. Tissue Eng Pt A 22(23–24):1337–1347. https://doi.org/10.1089/ten.tea.2016.0186

    Article  CAS  Google Scholar 

  85. Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S (2016) A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 10(9):715–738. https://doi.org/10.1002/term.1978

    Article  CAS  PubMed  Google Scholar 

  86. Erisken C, Kalyon DM, Wang HJ (2010) Viscoelastic and biomechanical properties of osteochondral tissue constructs generated from graded Polycaprolactone and Beta-Tricalcium phosphate composites. J Biomech Eng 132(9):091013. https://doi.org/10.1115/1.4001884

    Article  PubMed  Google Scholar 

  87. Liverani L, Roether JA, Nooeaid P, Trombetta M, Schubert DW, Boccaccini AR (2012) Simple fabrication technique for multilayered stratified composite scaffolds suitable for interface tissue engineering. Mater Sci Eng A 557:54–58. https://doi.org/10.1016/j.msea.2012.05.104

    Article  CAS  Google Scholar 

  88. Yunos DM, Ahmad Z, Salih V, Boccaccini AR (2013) Stratified scaffolds for osteochondral tissue engineering applications: electrospun PDLLA nanofibre coated bioglass (R)-derived foams. J Biomater Appl 27(5):537–551. https://doi.org/10.1177/0885328211414941

    Article  CAS  PubMed  Google Scholar 

  89. Mouthuy PA, Ye H, Triffitt J, Oommen G, Cui Z (2010) Physico-chemical characterization of functional electrospun scaffolds for bone and cartilage tissue engineering. Proc Inst Mech Eng H 224(H12):1401–1414. https://doi.org/10.1243/09544119jeim824

    Article  CAS  PubMed  Google Scholar 

  90. Erisken C, Kalyon DM, Wang HJ, Ornek-Ballanco C, Xu JH (2011) Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and beta-glycerophosphate concentrations. Tissue Eng Part A 17(9–10):1239–1252. https://doi.org/10.1089/ten.tea.2009.0693

    Article  CAS  PubMed  Google Scholar 

  91. Yang WX, Yang F, Wang YN, Both SK, Jansen JA (2013) In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater 9(1):4505–4512. https://doi.org/10.1016/j.actbio.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  92. Liu YY, Yu HC, Liu Y, Liang G, Zhang T, Hu QX (2016) Dual drug spatiotemporal release from functional gradient scaffolds prepared using 3D bioprinting and electrospinning. Polym Eng Sci 56(2):170–177. https://doi.org/10.1002/pen.24239

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno M. Neves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Casanova, M.R., Reis, R.L., Martins, A., Neves, N.M. (2018). The Use of Electrospinning Technique on Osteochondral Tissue Engineering. In: Oliveira, J., Pina, S., Reis, R., San Roman, J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1058. Springer, Cham. https://doi.org/10.1007/978-3-319-76711-6_11

Download citation

Publish with us

Policies and ethics