Skip to main content

Insights into the Mechanism of Gas Sensor Operation

  • Chapter
  • First Online:
Metal Oxide Nanomaterials for Chemical Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Since the development of the first models of gas detection on metal-oxide-based sensors much effort has been made to describe the mechanism responsible for gas sensing. Despite progress in recent years, a number of key issues remain the subject of controversy; for example, the disagreement between the results of electrophysical and spectroscopic characterization, as well as the lack of proven mechanistic description of surface reactions involved in gas sensing. In the present chapter the basics as well as the main problems and unresolved issues associated with the chemical aspects of gas sensing mechanism in chemiresistors based on semiconducting metal oxides are addressed.

“Sensors have a ‘life cycle’ consisting of preparation, activation, operation with deactivation and, possible, regeneration. Thus understanding the performance in terms of reaction and conductance mechanisms is only a part of the total understanding of a sensor.”

Dieter Kohl, Sensors and Actuators 1989, 18, 71.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heiland G, Mollwo E, Stockmann F (1959) Electronic processes in zinc oxide. Solid State Phys 8:191–323

    Article  CAS  Google Scholar 

  2. Many A, Goldstein Y, Grover NB (1971) Semiconductor surfaces. North-Holland Publishing Company, Amsterdam, 496

    Google Scholar 

  3. Morrison SR (1955) Surface-barrier effects in adsorption, illustrated by zinc oxide. Adv Catal 7:259–301

    Article  CAS  Google Scholar 

  4. Morrison SR (1977) The chemical physics of surfaces, Plenum Press, New York, 415

    Google Scholar 

  5. Wolkenstein T (1960) Electron theory of catalysis on semiconductors. Adv Catal 12:189–264

    Google Scholar 

  6. Wolkenstein T (1987) Electronic processes on the surface of semiconductors during chemisorption, Consult Bur New York, 431

    Google Scholar 

  7. Wolkenstein T (1964) Elektronentheorie der Katalyse an Halbleitern, Verlin: VEB

    Google Scholar 

  8. Hauffe K (1955) Application of the theory of semiconductors to problems of heterogeneous catalysis. Adv Catal 7:213–57

    Article  CAS  Google Scholar 

  9. Hauffe K (1955) Application of the semiconductor theory to problems of heterogeneous catalysis. Angewandte Chemie 67:189–207

    Article  CAS  Google Scholar 

  10. Engell HJ, Hauffe K (1953) The boundary-film theory of chemisorption. Interpreting the reaction on the solid-gas interface (Die Randschichttheorie der Chemisorption . Ein Beitrag zur Deutung von Vorgängen an der Grenzfläche Festkörper/Gas). Zeitschrift fuer Elektrochemie und Angewandte Physikalische Chemie 57:762–73

    CAS  Google Scholar 

  11. Hauffe K (1955) Reaktionen in und an Festen Stoffen (Erste Auflage). Springer, Berlin, 696

    Google Scholar 

  12. Hauffe K (1966) Reaktionen in und an Festen Stoffen (Zweite Auflage). Springer, Berlin, 696

    Google Scholar 

  13. Kiselev VF, Krylov OV (1987) Electronic phenomena in adsorption and catalysis on semiconductors and dielectrics. Springer series in surface sciences, Springer, Berlin, 279

    Google Scholar 

  14. Roginskii SZ (1949) Principles of catalyst theory. Problemy Kinetiki i Kataliza 6:9–53

    Google Scholar 

  15. Wagner C (1950) The mechanism of the decomposition of nitrous oxide on zinc oxide as catalyst. J Chem Phys 18:69–71

    Article  CAS  Google Scholar 

  16. Bevan DJ, Anderson MJS (1950) electronic conductivityconductivity and surface equilibria of zinc oxide. Discussions of the Faraday society 8:238–246

    Google Scholar 

  17. Boudart M (1952) Electronic chemical potential in chemisorption and catalysis. J Am Chem Soc 74:1531–5

    Article  CAS  Google Scholar 

  18. Weisz PB (1953) Effects of electronic-charge transfer between adsorbate and solid on chemisorption and catalysis. J Chem Phys 21:1531–8

    Article  CAS  Google Scholar 

  19. Morrison SR (1953) Changes of surface conductivity of germanium with ambient. J Phys Chem 57:860–3

    Article  CAS  Google Scholar 

  20. Garrett CGB (1960) Quantitative considerations concerning catalysis at a semiconductor surface. J Chem Phys 33(4):966–979

    Article  CAS  Google Scholar 

  21. Brattain WH, Bardeen J (1953) Surface properties of germanium. Bell Sys Tech J 32:1–41

    Google Scholar 

  22. Engell HJ (1954) Randschichteffekte an der Grenzfläche Hableiter/Vakuum und Halbleiter/Gasraum. Halbleiterprobleme 1:249–272

    Google Scholar 

  23. Hauffe K (1956) Gas reactions on semiconducting surfaces and space charge boundary layers. In: Kingston RH (ed) Semiconductor surface physics, University of Pennsylvania Press, Philadelphia 259–282

    Google Scholar 

  24. Vol’kenshtein FF (1949) Electronic theory of promotion and poisoning of ionic catalysts. Problemy Kinetiki i Kataliza 6(Geterogennyi Kataliz):66–82

    Google Scholar 

  25. Morrison SR (1982) Semiconductor gas sensors. Sens Actuators 2(4):329–341

    CAS  Google Scholar 

  26. Kefeli A (1956) Sauerstoffnachweis in Gasen durch Leitfähigkeitsänderung eines Halbleiters (zno). Diploma Thesis, Institut für Angewandte Physik, Universität Erlangen, Erlangen

    Google Scholar 

  27. Heiland G (1982) Homogeneous semiconducting gas sensors. Sens Actuators 2(4):343–61

    CAS  Google Scholar 

  28. Heiland G (1957) Effect of hydrogen on the electrical conductivity on the surface of zinc oxide crystals (Zum Einfluss von Wasserstoff auf die elektrische Leitfähigkeit an der Oberfläche von Zinkoxydkristallen). Zeitschrift fuer Physik 148:15–27

    Google Scholar 

  29. Myasnikov IA (1957) The relation between the electric conductance and the adsorptive and sensitizing properties of zinc oxide. I. Electron phenomena in zinc oxide during adsorption of oxygen. Zhurnal Fizicheskoi Khimii 31:1721–30

    Google Scholar 

  30. Kupriyanov LY (1996) Semiconductor sensors in physico-chemical studies. In: Middelhoek S (ed) Handbook of sensors and actuators, vol 4. Elsevier, Amsterdam p 412

    Google Scholar 

  31. Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34:1502–1503

    Article  CAS  Google Scholar 

  32. Seiyama T, Kagawa S (1966) Detector for gaseous components with semiconductive thin films. Anal Chem 38(8):1069–73

    Article  CAS  Google Scholar 

  33. Taguchi N (1962) Gas-detecting device. Jpn Pat 45–38200

    Google Scholar 

  34. Chiba A (1992) Development of the TGS gas sensor. In: Yamauchi S (ed) Chemical sensor technology, Elsevier, Amsterdam pp 1–18

    Google Scholar 

  35. Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Oxide materials for development of integrated gas sensors—a comprehensive review. Crit Rev Solid State Mater Sci 29(3–4):111–188

    Article  CAS  Google Scholar 

  36. Ihokura K, Watson J (1994) Stannic oxide gas sensors, principles and applications. CRC Press, Boca Raton p 187

    Google Scholar 

  37. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7(3):143–167

    Article  CAS  Google Scholar 

  38. Barsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensorsgas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys-Condens Matter 15(20):813–839

    Article  Google Scholar 

  39. Gurlo A, Barsan N, Weimar U (2006) Gas sensors based on semiconducting metal oxidesmetal oxides. In: Fierro JLG (ed) Metal oxides: chemistry and applications, CRS Press, Boca Raton, pp 683–738

    Google Scholar 

  40. Ahlers S, Müller G, Doll T (2005) A rate equation approach to the gas sensitivity of thin film metal oxide materials. Sens Actuators, B: Chem 107(2):587–599

    Article  CAS  Google Scholar 

  41. Park CO, Akbar SA (2003) Ceramics for chemical sensing. J Mater Sci 38(23):4611–4637

    Article  CAS  Google Scholar 

  42. Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators, B: Chem 107(1):209–232

    Google Scholar 

  43. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2(1):36–50

    Article  CAS  Google Scholar 

  44. Batzill M, Diebold U (2006) Characterizing solid state gas responses using surface charging in photoemission: water adsorption on SnO2(101). J Phys-Condens Matter 18(8):129–134

    Article  CAS  Google Scholar 

  45. Bell NA, Brooks JS, Forder SD, Robinson JK, Thorpe SC (2002) Backscatter Fe-57 Mossbauer studies of iron(II) phthalocyanine. Polyhedron 21(1):115–118

    Article  CAS  Google Scholar 

  46. Wolkenstein T (1969) Introduction. In: Hauffe K and Wolkenstein T (eds) Symposium on electronic phenomena in chemisorption and catalysis on semiconductors, Walter de Gruyter & Co, Berlin, pp 67–82

    Google Scholar 

  47. Weisz PB (1956) Bridges of physics and chemistry across the semiconductor surface. In: Kingston RH (ed) Semiconductor surface physics, University of Pennsylvania Press, Philadelphia, pp 247–258

    Google Scholar 

  48. Goepel W (1985) Entwicklung chemischer Sensoren: empirische Kunst oder systematische Forschung? Teil 2 (Development of chemical sensors: empirical art or systematic research? Part 2). Technisches Messen 52(3):92–105

    CAS  Google Scholar 

  49. Goepel W (1985) Entwicklung chemischer sensoren: empirische Kunst oder systematische Forschung? Teil 3 (Development of chemical sensors: empirical art or systematic research? Part 3). Technisches Messen 52(2):175–182

    CAS  Google Scholar 

  50. Goepel W (1985) Entwicklung chemischer sensoren: empirische Kunst oder systematische Forschung? (Development of chemical sensors: empirical art or systematic research?). Technisches Messen 52(5):175–82

    CAS  Google Scholar 

  51. Goepel W (1985) Chemisorption and charge transfer at ionic semiconductor surfaces: implications in designing gas sensors. Prog Surf Sci 20(1):9–103

    Article  Google Scholar 

  52. Kohl D (1989) Surface processes in the detection of reducing gases with tin dioxide-based devices. Sens Actuators 18(1):71–113

    Article  CAS  Google Scholar 

  53. Kiselev VF, Krylov OV (1985) Adsorption processes on semiconductor and dielectric surfaces I. Springer series in chemical physics, 287

    Google Scholar 

  54. Fuller MJ, Warwick ME (1973) Catalytic oxidation of carbon monoxide on tin(IV) oxide. J Catal 29(3):441–50

    Article  CAS  Google Scholar 

  55. Thornton EW, Harrison PG (1975) Tin oxide surfaces. I Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxidecarbon monoxide on tin(IV) oxide. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 71(3):461–72

    CAS  Google Scholar 

  56. Harrison PG (1989) Tin(IV) Oxide: surface chemistry, catalysis and gas sensing. In: Harrison PG (ed) Chemistry of Tin, Blackie, Glasgow

    Google Scholar 

  57. Mizokawa Y, Nakamura S (1975) ESR and electric conductance studies of the fine powdered tin dioxide. Jpn J Appl Phys 14(6):779–88

    Article  CAS  Google Scholar 

  58. Che M, Tench AJ (1982) Characterization and reactivity of mononuclear oxygen species on oxide surfaces. Adv Catal 31:77–133

    Article  CAS  Google Scholar 

  59. Che M, Tench AJ (1983) Characterization and reactivity of molecular oxygen species on oxide surfaces. Adv Catal 32:1–148

    Article  CAS  Google Scholar 

  60. Ogawa H, Nishikawa M, Abe A (1982) Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J Appl Phys 53(6):4448–4455

    Article  CAS  Google Scholar 

  61. Mizsei J, Harsanyi J (1983) Resistivity and work function measurements on Pd-doped SnO2 sensor surface. Sens Actuators 4:397–402

    Article  CAS  Google Scholar 

  62. Schierbaum KD, Weimar U, Goepel W, Kowalkowski R (1991) Conductance, work function and catalytic activity of SnO2-based gas sensors. Sens Actuators, B: Chem B3(3):205–214

    Article  CAS  Google Scholar 

  63. Gutierrez J, Ares L, Horillo MC, Sayago I, Agapito J, Lopez L (1991) Use of complex impedance spectroscopy in chemical sensor characterization. Sens Actuators B: Chem 4(3–4):359–363

    Article  Google Scholar 

  64. Mizsei J, Lantto V (1991) Simultaneous response of work function and resistivity of some SnO2-based samples to H2 and H2S. Sens Actuators B: Chem 4(1–2):163–168

    Article  Google Scholar 

  65. Kappler J (2001) Characterization of high-performance SnO2 gas sensorsgas sensors for CO detection by in-situin-situ techniques (Ph.D. Thesis, University of Tübingen) Aachen: Shaker Verlag

    Google Scholar 

  66. Oprea A, Moretton E, Barsan N, Becker WJ, Wollenstein J, Weimar U (2006) Conduction model of SnO2 thin films based on conductance and Hall effect measurements. J Appl Phys 100(3):033716

    Article  CAS  Google Scholar 

  67. Sahm T, Gurlo A, Barsan N, Weimar U (2006) Basics of oxygen and SnO2 interaction; work function change and conductivity measurements. Sens Actuators, B: Chem 118(1–2):78–83

    Article  CAS  Google Scholar 

  68. Sahm T, Gurlo A, Barsan N, Weimar U, Madler L (2005) Fundamental studies on SnO2 by means of simultaneous work function change and conduction measurements. Thin Solid Films 490(1):43–47

    Article  CAS  Google Scholar 

  69. Gurlo A, Barsan N, Oprea A, Sahm M, Sahm T, Weimar U (2004) An n- to p-type conductivity transition induced by oxygen adsorption on alpha-Fe2O3. Appl Phys Let 85(12):2280–2282

    Article  CAS  Google Scholar 

  70. Gurlo A, Sahm M, Oprea A, Barsan N, Weimar U (2004) A p- to n-transition on α-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens Actuators B-Chem 102(2):291–298

    Article  CAS  Google Scholar 

  71. Dunstan PR, Maffeis TGG, Ackland MP, Owen GT, Wilks SP (2003) The correlation of electronic properties with nanoscale morphological variations measured by SPM on semiconductor devices. J Phys Condens Matter 15(42):S3095−S3112

    Google Scholar 

  72. Maffeis TGG, Owen GT, Malagu C, Martinelli G, Kennedy MK, Kruis FE, Wilks SP (2004) Direct evidence of the dependence of surface state density on the size of SnO2 nanoparticles observed by scanning tunnelling spectroscopy. Surf Sci 550(1–3):21–25

    Google Scholar 

  73. Maffeis TGG, enny MP, Teng KS, Wilks SP, Ferkel HS, Owen GT (2004) Macroscopic and microscopic investigations of the effect of gas exposure on nanocrystalline SnO2 at elevated temperature. Appl Surf Sci 234(1–4):82–85

    Article  CAS  Google Scholar 

  74. Arbiol J, Gorostiza P, Cirera A, Cornet A, Morante JR (2001) In situ analysis of the conductance of SnO2 crystalline nanoparticles in the presence of oxidizing or reducing atmosphere by scanning tunneling microscopy. Sens Actuators B-Chem 78(1–3):57–63

    Article  Google Scholar 

  75. Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365(4):287–304

    Article  CAS  Google Scholar 

  76. Gurlo A, Riedel R (2007) In situ and operando spectroscopy for assessing mechanisms of gas sensing. Angewandte Chemie—Int Edn 46(21):3826–3848

    Google Scholar 

  77. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B-Cheml 121(1):18–35

    Article  CAS  Google Scholar 

  78. Windischmann H, Mark P (1979) A model for the operation of a thin-film tin oxide (SnOx) conductance-modulation carbon monoxide sensor. J Electrochem Soc 126(4):627–33

    Article  CAS  Google Scholar 

  79. Schulz M, Bohn E, Heiland G (1979) Messung von Fremdgasen in der Luft mit Halbleitersensoren (Measurement of extraneous gases in air by means of semiconducting sensors). Tech Messen 46(11):405–14

    CAS  Google Scholar 

  80. Williams DE (1987) Conduction and gas response of semiconductor gas sensors. In: Moseley PT and Totfield BC (eds) Solid state gas sensors, Adam Hilger, Philadelphia, pp 71–123

    Google Scholar 

  81. Madou MJ, Morrison SR (1989) Chemical sensing with solid state devices. Academic Press, San Diego, p 556

    Google Scholar 

  82. Gas Sensors. Sberveglieri G (ed) 1992, Kluwer, Dordrecht, p 409

    Google Scholar 

  83. Jarzebski ZM, Marton JP (1976) Physical properties of tin(IV) oxide materials. II. Electrical properties. J Electrochem Soc 123(9):299–310

    Article  Google Scholar 

  84. Sahm T, Gurlo A, Barsan N, Weimar U (2005) Basics of oxygen and SnO2 interaction; work function change and conductivity measurements. In Eurosensors XIX, European conference on solid-state transducers, Barcelona

    Google Scholar 

  85. Tournier G, Pijolat C (1999) Influence of oxygen concentration in the carrier gas on the response of tin dioxide sensor under hydrogen and methane. Sens Actuators, B: Chem B61(1–3):43–50

    Article  CAS  Google Scholar 

  86. Arnold MS, Avouris P, Pan ZW, Wang ZL (2003) Field-effect transistors based on single semiconducting oxide nanobelts. J Phys Chem B 107(3):659–663

    Article  CAS  Google Scholar 

  87. Kalinin SV, Shin J, Jesse S, Geohegan D, Baddorf AP, Lilach Y, Moskovits M, Kolmakov A (2005) Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device. J Appl Phys 98(4)

    Google Scholar 

  88. Szuber J, Czempik G, Larciprete R, Adamowicz B (2000) The comparative XPS and PYS studies of SnO2 thin films prepared by L-CVD technique and exposed to oxygen and hydrogen. Sens Actuators, B: Chem B70(1–3):177–181

    Article  CAS  Google Scholar 

  89. Figurovskaya EN, Kiselev VF, Vol’kenshtein FF (1965) Influence of chemisorption of oxygen on the work function and electrical conductivity of TiO2. Doklady Akademii Nauk SSSR 161(5):1142–1145

    CAS  Google Scholar 

  90. Kiselev VF (1967) Borderline between physical and chemical adsorption. Zeitschrift fuer Chemie 7(10):369–378

    Article  CAS  Google Scholar 

  91. Gopel W, Rocker G, Feierabend R (1983) Intrinsic defects of TiO2(110)—interaction with chemisorbed O2, H2, CO, and CO2. Phy Rev B 28(6):3427–3438

    Google Scholar 

  92. Heiland G (1954) Zum Einfluss von Wasserstoff auf die elektrische Leitfähigkeit von ZnO-Kristallen. Zeitschrift der Physik 138:459–464

    Google Scholar 

  93. Goepel W (1978) Reactions of oxygen with zinc oxide-(1010) surfaces. J Vac Sci Technol 15(4):1298–310

    Article  CAS  Google Scholar 

  94. Fujitsu S, Koumoto K, Yanagida H, Watanabe Y, Kawazoe H (1999) Change in the oxidation state of the adsorbed oxygen equilibrated at 25 °C on ZnO surface during room temperature annealing after rapid quenching. Jpn J Appl Phys Part 1: Regular papers, Short notes and review papers 38(3A):1534–1538

    Google Scholar 

  95. Na BK, Walters AB, Vannice MA (1993) Studies of gas adsorptiongas adsorption on zinc oxide using ESR, FTIR spectroscopy, and MHE (microwave Hall effect) measurements. J Catal 140(2):585–600

    Article  CAS  Google Scholar 

  96. Kiselev VF, Krylov OV (1987) Springer series in surface sciences, electronic phenomena in adsorption and catalysis on semiconductors and dielectrics. 7:279

    Google Scholar 

  97. McAleer JF, Moseley PT, Norris JOW, Williams DE (1987) Tin dioxide gas sensors. Part 1. Aspects of the surface chemistry revealed by electrical conductance variations. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 83(4):1323–1346

    CAS  Google Scholar 

  98. Harrison PG, Willett MJ (1989) Tin oxide surfaces. 20. Electrical properties of tin(IV) oxide gel: nature of the surface conductance in air as a function of temperature. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 85(8):1921–1932

    CAS  Google Scholar 

  99. Willett MJ (1991) Spectroscopy of surface reactions In: Moseley PT, Norris JO and Williams DE (eds) Techiques and mecahnism in gas sensing, Adam Hilger, Bristol, pp 61–107

    Google Scholar 

  100. Pulkkinen U, Rantala TT, Rantala TS, Lantto V (2001) Kinetic Monte Carlo simulation of oxygen exchange of SnO2 surface. J Mol Catal A: Chem 166(1):15–21

    Article  CAS  Google Scholar 

  101. Lantto V, Romppainen P (1987) Electrical studies on the reactions of carbon monoxide with different oxygen species on tin dioxide surfaces. Surf Sci 192(1):243–264

    Article  CAS  Google Scholar 

  102. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592

    Article  CAS  Google Scholar 

  103. Oprea A, Gurlo A, Barsan N, Weimar U (2009) Transport and gas sensing properties of In2O3 nanocrystalline thick films: a hall effect based approach. Sens Actuators B-Chem 139(2):322–328

    Article  CAS  Google Scholar 

  104. Geistlinger H (1993) Electron theory of thin-film gas sensors Sens Actuators, B: Chem 17(1):47–60

    Article  CAS  Google Scholar 

  105. Geistlinger H, Eisele I, Flietner B, Winter R (1996) Dipole- and charge transfer contributions to the work function change of semiconducting thin films: experiment and theory. Sens Actuators, B: Chem B34(1–3):499–505

    Article  CAS  Google Scholar 

  106. Rothschild A, Komem Y (2003) Numerical computation of chemisorption isotherms for device modeling of semiconductor gas sensors. Sens Actuators B-Chem 93(1–3):362–369

    Article  CAS  Google Scholar 

  107. Gurlo A, Barsan N, Ivanovskaya M¸Weimar U, Gopel W (1998) In2O3 and MoO3-In2O3 thin film semiconductor sensors: interaction with NO2 and O3. Sens Actuators B-Chem 47(1–3):92–99

    Article  Google Scholar 

  108. Wahlstrom E, Vestergaard EK, Schaub R, Ronnau A, Vestergaard M, Laegsgaard E, Stensgaard I, Besenbacher F (2004) Electron transfer-induced dynamics of oxygen molecules on the TiO2(110) surface. Science 303(5657):511–513

    Article  CAS  Google Scholar 

  109. Gurlo A (2006) Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence of adsorbed oxygen. ChemPhysChem 7:2041–2052

    Article  CAS  Google Scholar 

  110. Henderson MA, Epling WS, Perkins CL, Peden CHF, Diebold U (1999) Interaction of molecular oxygen with the vacuum-annealed TiO2(110) surface: molecular and dissociative channels. J Phys Chem B 103(25):5328–5337

    Article  CAS  Google Scholar 

  111. Bartolucci F, Franchy R, Barnard JC, Palmer RE (1998) Two chemisorbed species of O2 on Ag(110). Phys Rev Lett 80(23):5224–5227

    Article  CAS  Google Scholar 

  112. Iwamoto M, Yoda Y, Yamazoe N, Seiyama T (1978) Study of metal oxide catalysts by temperature programmed desorption. 4. Oxygen adsorption on various metal oxides. J Phys Chem 82(24):2564–2570

    Article  CAS  Google Scholar 

  113. Tanaka K, Blyholder G (1972) Adsorbed oxygen species on zinc oxide in the dark and under illumination. J Phys Chem 76(22):3184–7

    Article  CAS  Google Scholar 

  114. Zemel JN (1988) Theoretical description of gas-film interaction on tin oxide (SnOx). Thin Solid Films 163:189–202

    Article  CAS  Google Scholar 

  115. Kolmakov A, Moskovits M (2004) Chemical sensing and catalysiscatalysis by one-dimensional metal-oxide nanostructures. Ann Rev Mater Res 34:151–180

    Article  CAS  Google Scholar 

  116. Maier J, Gopel W (1998) Investigations of the bulk defect chemistry of polycrystalline tin(IV) oxide. J Solid State Chem 72(2):293–302

    Article  CAS  Google Scholar 

  117. Gopel W, Schierbaum K, Wiemhofer HD, Maier J (1989) Defect chemistry of tin(IV)-oxide in bulk and boundary-layers. Solid State Ionics 32(3):440–443

    Article  Google Scholar 

  118. Kamp B, Merkle R, Lauck R, Maier J (2005) Chemical diffusion of oxygen in tin dioxide: Effects of dopantsdopants and oxygen partial pressure. J Solid State Chem 178(10):3027–3039

    Article  CAS  Google Scholar 

  119. Kamp B, Merkle R, Maier J (2001) Chemical diffusion of oxygen in tin dioxide. Sens Actuators, B: Chem B77(1–2):534–542

    Article  CAS  Google Scholar 

  120. Armelao L, Barreca D, Bontempi E, Canevali C, Depero LE, Mari CM, Ruffo R, Scotti R, Tondello E, Morazzoni F (2002) Can electron paramagnetic resonance measurements predict the electrical sensitivity of SnO2-based film? Appl Magn Reson 22(1):89–100

    Article  CAS  Google Scholar 

  121. Safonova O, Bezverkhy I, Fabrichnyi P, Rumyantseva M, Gaskov A (2002) Mechanism of sensing CO in nitrogen by nanocrystalline SnO2 and SnO2(Pd) studied by Mossbauer spectroscopy and conductance measurements. J Mater Chem 12(4):1174–1178

    Article  CAS  Google Scholar 

  122. Morandi S, Ghiotti G, Chiorino A, Comini E (2005) FT-IR and UVUV-Vis-NIR characterisation of pure and mixed MoO3 and WO3 thin films. Thin Solid Films 490(1):74–80

    Article  CAS  Google Scholar 

  123. Lenaerts S, Roggen J, Maes G (1995) FT-IR characterization of tin dioxide gas sensor materials under working conditions. Spectrochim Acta Part A Mol Biomol Spectrosc 51A(5):883–894

    Article  CAS  Google Scholar 

  124. Pohle R, Fleischer M, Meixner H (2001) Infrared emission spectroscopic study of the adsorption of oxygen on gas sensors based on polycrystalline metal oxide films. Sens Actuators B-Chem 78(1–3):133–137

    Article  Google Scholar 

  125. Sergent N, Gelin P, Perier-Camby L, Praliaud H, Thomas G (2003) Study of the interactions between carbon monoxide and high specific surface area tin dioxide: Thermogravimetric analysis and FTIR spectroscopy. J Therm Anal Calorim 72(3):1117–1126

    Article  CAS  Google Scholar 

  126. Koziej D, Barsan N, Weimar U, Szuber J, Shimanoe K, Yamazoe N (2005) Water-oxygen interplay on tin dioxide surface: implication on gas sensing. Chem Phys Lett 410(4–6):321–323

    Article  CAS  Google Scholar 

  127. Di Nola P, Morazzoni F, Scotti R, Narducci D (1993) Paramagnetic point defects in tin dioxide and their reactivity with surrounding gases. Part 1—interaction of oxygen lattice centers with vapor-phase water, air, inert and combustible gases, as revealed by electron paramagnetic resonance spectroscopy. J Chem Soc, Faraday Trans 89(20):3711–3713

    Article  Google Scholar 

  128. Lenaerts S, Honore M, Huyberechts G, Roggen J, Maes G (1994) In situ infrared and electrical characterization of tin dioxide gas sensors in nitrogen/oxygen mixtures at temperatures up to 720 K. Sens Actuators, B: Chem 19(1–3):478–482

    Article  CAS  Google Scholar 

  129. Ghiotti G, Chiorino A, Boccuzzi F (1989) Infrared study of surface chemistry and electronic effects of different atmospheres on tin dioxide. Sens Actuators 19(2):151–7

    Article  CAS  Google Scholar 

  130. Harbeck S (2005) Characterisation and functionality of SnO2 gas sensors using vibrational spectroscopy. Ph.D. thesis, Faculty of Chemistry, Universität tübingen, http://w210.ub.uni-tuebingen.de/dbt/volltexte/2005/1693/, Tuebingen

  131. Fonstad CG, Rediker RH (1971) Electrical properties of high-quality stannic oxide crystals. J Appl Phys 42(7):2911–2918

    Article  CAS  Google Scholar 

  132. Samson S, Fonstad CG (1973) Defect structure and electronic donordonor levels in stannic oxide crystals. J Appl Phys 44(10):4618–4621

    Article  CAS  Google Scholar 

  133. Lopez N, Prades JD, Hernandez-Ramirez F, Morante JR, Pan J, Mathur S (2010) Bidimensional versus tridimensional oxygen vacancy diffusion in SnO2-x under different gas environments. Phys Chem Chem Phys 12(10):2401–2406

    Article  CAS  Google Scholar 

  134. Hernandez-Ramirez F, Prades JD, Tarancon A¸Barth S, Casals O, Jimenez-Diaz R, Pellicer E¸Rodriguez J, Morante JR, Juli MA, Mathur S, Romano-Rodriguez A (2008) Insight into the role of oxygen diffusion in the sensing mechanisms of SnO2 nanowires. Adv Funct Mater 18(19):2990–2994

    Article  CAS  Google Scholar 

  135. Boreskov GK (1964) The catalysis of isotopic exchange in molecular oxygen. Adv Catal 15:285–339

    Article  CAS  Google Scholar 

  136. Safonova OV, Neisius T, Ryzhikov A, Chenevier B, Gaskov AM, Labeau M (2005) Characterization of the H2 sensing mechanism of Pd-promoted SnO2 by XAS in operando conditions. Chem Commun 41:5202–5204

    Article  CAS  Google Scholar 

  137. Schmid W, Barsan N, Weimar U (2003) Sensing of hydrocarbons with tin oxide sensors: possible reaction path as revealed by consumption measurements. Sens Actuators B-Chem 89(3):232–236

    Article  CAS  Google Scholar 

  138. Delabie L, Honore M, Lenaerts S, Huyberechts G, Roggen J, Maes G (1997) The effect of sintering and Pd-doping on the conversion of CO to CO2 on SnO2 gas sensor materials. Sens Actuators B-Chem 44(1–3):446–451

    Article  Google Scholar 

  139. Dutta PK, De Lucia MF (2006) Correlation of catalytic activity and sensor response in TiO2 high temperature gas sensors. Sens Actuators, B: Chem 115(1):1–3

    Article  CAS  Google Scholar 

  140. Schmid W, Barsan N, Weimar U (2004) Sensing of hydrocarbons and CO in low oxygen conditions with tin dioxide sensors: possible conversion paths. Sens Actuators B-Chem 103(1–2):362–368

    Article  CAS  Google Scholar 

  141. Hahn SH, Barsan N, Weimar U, Ejakov SG, Visser JH, Soltis RE (2003) CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Films 436(1):17–24

    Article  CAS  Google Scholar 

  142. Gurlo A, Sahm M, Oprea A, Barsan N, Weimar U (2004) A p- to n-transition on alpha-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens Actuators B-Chem 102(2):291–298

    Article  CAS  Google Scholar 

  143. Gurlo A, Barsan N, Oprea A, Sahm M, Sahm T, Weimar U (2004) An n- to p-type conductivity transition induced by oxygen adsorption on alpha-Fe2O3. Appl Phys Lett 85(12):2280–2282

    Article  CAS  Google Scholar 

  144. Arulsamy AD, Elersic K, Modic M, Cvelbar U, Mozetic M (2010) Reversible carrier-type transitions in gas-sensing oxides and nanostructures. Chem Phys Chem 11(17):3704–3712

    Article  CAS  Google Scholar 

  145. Gurlo A (2006) Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. Chem Phys Chem 7(10):2041–2052

    Article  CAS  Google Scholar 

  146. Hahn S (2002) SnO2 thick film sensors at ultimate limits: performance at low O2 and H2O concentrations. Size reduction by CMOS technology, Ph.D. thesis, Faculty of Chemistry, Universität Tübingen, Tuebingen

    Google Scholar 

  147. Benitez JJ, Centeno MA, Merdrignac OM¸Guyader J, Laurent YJ, Odriozola A (1995) DRIFTS chamber for in situ and simultaneous study of infrared and electrical response of sensors. Appl Spectrosc 49(8):1094–6

    Article  CAS  Google Scholar 

  148. Benitez JJ, Centeno MA, dit Picard CL, Merdrignac O, Laurent Y, Odriozola JA (1996) In situ diffuse reflectance infrared spectroscopy (DRIFTS) study of the reversibility of CdGeON sensors towards oxygen. Sens Actuators, B: Chem B31(3):197–202

    Google Scholar 

  149. Safonova OV, Neisius T, Chenevier B, Matko I, Labeau M, Gaskov A (2004) In situ XAS studies on the effect of Pd and Pt clusters on the mechanism of SnO2 based gas sensors. In 13th international congress on catalysis, Paris, France, July 2004

    Google Scholar 

  150. Gaidi M, Chenevier B, Labeau M, Hazemann JL In situ simultaneous XAS and electrical characterizations of Pt-doped tin oxide thin film deposited by pyrosol method for gas sensors application. Sens Actuators, B: Chem B120(1):313–315

    Google Scholar 

  151. Gaidi M, Labeau M, Chenevier B, Hazemann JL (1998) In situ EXAFS analysis of the local environment of Pt particles incorporated in thin films of SnO2 semi-conductor oxide used as gas-sensors. Sens Actuators B-Chem 48(1–3):277–284

    Article  Google Scholar 

  152. Gaidi M, Hazemann JL, Matko I, Chenevier B, Rumyantseva M, Gaskov A, Labeau M (2000) Role of Pt aggregates in Pt/SnO2 thin films used as gas sensors—investigations of the catalytic effect. J Electrochem Soc 147(8):3131–3138

    Article  CAS  Google Scholar 

  153. Sharma SS, Nomura K, Ujihira Y (1992) Moessbauer studies on tin-bismuth oxide carbon monoxide selective gas sensor. J Appl Phys 71(4):2000–5

    Article  CAS  Google Scholar 

  154. Nomura K, Sharma SS, Ujihira Y (1993) Characterization of tin oxide films gas sensor by in situ conversion electron Moessbauer spectrometry (CEMS). Nucl Instrum Methods Phys Res, Sect B B76(1–4):357–9

    Article  CAS  Google Scholar 

  155. Baraton M.-I, Merhari L (2005) Investigation of the gas detection mechanism in semiconductor chemical sensors by FTIR spectroscopy. Synth React Inorg, Met-Org, Nano-Met Chem 35(10):733–742

    Article  CAS  Google Scholar 

  156. Baraton M-I, Merhari L (2004) Nanoparticles-based chemical gas sensors for outdoor air quality monitoring. Nano-Micro Interface 227–238

    Google Scholar 

  157. Baraton M-I (1996) FT-IR surface study of nanosized ceramic materials used as gas sensors. Sens Actuators, B: Chem B31(1–2):33–8

    Article  CAS  Google Scholar 

  158. Baraton MI (1994) Infrared and Raman characterization of nanophase ceramic materials. High Temp Chem Processes 3:545–554

    CAS  Google Scholar 

  159. Baraton MI, Merhari L, Ferkel H, Castagnet JF (2002) Comparison of the gas sensing properties of tin, indium and tungsten oxides nanopowders: carbon monoxide and oxygen detection. Mater Sci Eng C-Biomimetic Supramolecular Syst 19(1–2):315–321

    Article  Google Scholar 

  160. Baraton MI, Merhari L, Keller P, Zweiacker K, Meyer JU (1999) Novel electronic conductance CO2 sensors based on nanocrystalline semiconductors. Materials research society symposium proceedings, (Microcrystalline and Nanocrystalline Semiconductors–1998) 536:341–346

    Google Scholar 

  161. Chiorino A, Ghiotti G, Prinetto F, Carotta MC¸Malagu C, Martinelli G (2001) Preparation and characterization of SnO2 and WOx-SnO2 nanosized powders and thick films for gas sensing. Sens Actuators, B: Chem B78(1–3):89–97

    Article  CAS  Google Scholar 

  162. Chiorino A, Ghiotti G, Prinetto F, Carotta MC, Gallana M, Martinelli G (1999) Characterization of materials for gas sensors. Surface chemistry of SnO2 and MoOx-SnO2 nano-sized powders and electrical responses of the related thick films. Sens Actuators B-Chem 59(2–3):203–209

    Google Scholar 

  163. Chiorino A, Ghiotti G, Carotta MC, Martinelli G (1998) Electrical and spectroscopic characterization of SnO2 and Pd-SnO2 thick films studied as CO gas sensors. Sens Actuators, B: Chem B47(1–3):205–212

    Article  CAS  Google Scholar 

  164. Chiorino A, Ghiotti G, Prinetto F, Carotta MC, Martinelli G, Merli M (1997) Characterization of SnO2-based gas sensors a spectroscopic and electrical study of thick films from commercial and laboratory-prepared samples. Sens Actuators, B Chem B 44(1–3):474–482

    Article  CAS  Google Scholar 

  165. Popescu DA, Herrmann JM, Ensuque A, Bozon-Verduraz F (2001) Nanosized tin dioxide: spectroscopic (UV-VIS, NIR, EPR) and electrical conductivity studies Phys Chem Chem Phys 3(12):2522–2530

    Article  CAS  Google Scholar 

  166. Canevali C, Mari CM, Mattoni M, Morazzoni F, Ruffo R, Scotti R, Russo U, Nodari L (2004) Mechanism of sensing NO in argon by nanocrystalline SnO2: electron paramagnetic resonance, Mossbauer and electrical study. Sens Actuators, B: Chem B100(1–2):228–235

    Article  CAS  Google Scholar 

  167. Canevali C, Mari CM, Mattoni M, Morazzoni F, Nodari L, Ruffo R, Russo U, Scotti R (2005) Interaction of NO with nanosized Ru-, Pd-, and Pt-doped SnO2: electron paramagnetic resonance, Mossbauer, and electrical investigation. J Phys Chem B 109(15):7195–7202

    Article  CAS  Google Scholar 

  168. Morazzoni F, Canevali C, Chiodini N, Mari C, Ruffo R, Scotti R, Armelao L, Tondello E, Depero LE, Bontempi E (2001) Nanostructured Pt-doped tin oxide films: sol-gel preparation, spectroscopic and electrical characterization. Chem Mater 13(11):4355–4361

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Gurlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gurlo, A. (2013). Insights into the Mechanism of Gas Sensor Operation. In: Carpenter, M., Mathur, S., Kolmakov, A. (eds) Metal Oxide Nanomaterials for Chemical Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5395-6_1

Download citation

Publish with us

Policies and ethics