Residual Stresses in Modelling Fatigue Lifetime of Gas Nitrided Iron-Based Alloys

Residual Stresses in Modelling Fatigue Lifetime of Gas Nitrided Iron-Based Alloys

H. Weil, L. Barrallier, S. Jégou, A. Courleux, G. Beck

download PDF

Abstract. The objective of this work is to propose a model abled to optimize the mechanical properties from gaseous nitriding of steels (hardness, residual stresses) for a given loading and fatigue lifetime. Multiaxial fatigue criteria are used and the present study focuses on the influence of residual stresses. Starting from a surface loading profile, the theoretical residual stress in-depth profile can be calculated aiming infinite fatigue lifetime. The model allows then optimization of the nitriding parameters.

Keywords
Residual Stress, Nitriding, Fatigue, Rupture, Hardness, Crossland, Dang Van

Published online 12/22/2016, 6 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: H. Weil, L. Barrallier, S. Jégou, A. Courleux, G. Beck, ‘Residual Stresses in Modelling Fatigue Lifetime of Gas Nitrided Iron-Based Alloys’, Materials Research Proceedings, Vol. 2, pp 97-102, 2017

DOI: http://dx.doi.org/10.21741/9781945291173-17

The article was published as article 17 of the book Residual Stresses 2016

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] M.A. Terres, S. Ben Mohamed, H. Sidhom. Influence of ion nitriding on fatigue strength of low-alloy (42CrMo4) steel: Experimental characterization and predictive approach, International Journal of Fatigue. 32, 1795-1804 (2010). http://dx.doi.org/10.1016/j.ijfatigue.2010.04.004
[2] M. Chaussumier. PhD Thesis, Ecole Nationale Supérieure d’Arts et Métiers, France (2000).
[3] L. Barrallier, J. Barralis. On origin of residual stress generated by nitriding treatment on alloy steels, Proc. 4th Int. Conf. Residual Stress, Baltimore. 43, 629-642 (1994).
[4] L. Barrallier. Classical nitriding of heat treatable steel, in: Thermochemical Surface Engineering of Steels, Woodhead Publishing, 2015, pp. 392-411. http://dx.doi.org/10.1533/9780857096524.3.393
[5] S. Jégou, L. Barrallier, R. Kubler. Phase transformations and induced volume changes in a nitride ternary Fe-3%Cr-0.345%C alloy, Acta Materialia. 58, 2666-2676 (2010). http://dx.doi.org/10.1016/j.actamat.2009.12.053
[6] L. Barrralier. PhD Thesis, Ecole Nationale Supérieure d’Arts et Métiers, France (1992).
[7] L. Castex, J. Barralis et J.C. Chaize. Etude de la tenue en fatigue de l’acier 32CDV13 nitruré, Mémoires et Etudes Scientifiques Revue de Métallurgie. 84, 13-23 (1987).
[8] B. Crossland. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel, Fatigue of Metals-International Conférence-SEP LONDON, 138-149 (1956).
[9] O. Message, K. Dang Van, B. Griveau. On a new multiaxial fatigue criterion : theory and application. Biaxial and Multiaxial Fatigue, Mechanical Engineering Publications, 1989, pp. 479-496.
[10] B. Weber. PhD Thesis, Institut National des Sciences Appliquées de Lyon, France (1999).
[11] K.L. Johnson, Contact mechanics, Cambridge University Press, Cambridge, 1985. http://dx.doi.org/10.1017/CBO9781139171731