Issue 6, 2013

Facile synthesis and electrochemical properties of CoMn2O4 anodes for high capacity lithium-ion batteries

Abstract

Manganese-based oxides have been proven to be promising materials for applications in high voltage and high energy density Li-ion batteries. In this work, by using hydrothermally synthesized β-MnO2 nanorods as the templates, we prepared single-crystalline CoMn2O4 nano/submicrorods with diameters of about 100 nm and lengths up to tens of micrometers. The electrochemical tests showed that the CoMn2O4 products have a reversible capacity of 512 mA h g−1 at a current density of 200 mA g−1 with a coulombic efficiency of 98% after 100 cycles. A specific capacity of about 400 mA h g−1 was obtained even at a current density as high as 1000 mA g−1, exhibiting a high reversibility and a good capacity retention. This study suggests that CoMn2O4 nano/submicrorods are promising anode materials for high performance lithium-ion batteries.

Graphical abstract: Facile synthesis and electrochemical properties of CoMn2O4 anodes for high capacity lithium-ion batteries

Article information

Article type
Paper
Submitted
30 Aug 2012
Accepted
30 Nov 2012
First published
30 Nov 2012

J. Mater. Chem. A, 2013,1, 2139-2143

Facile synthesis and electrochemical properties of CoMn2O4 anodes for high capacity lithium-ion batteries

L. Wang, B. Liu, S. Ran, L. Wang, L. Gao, F. Qu, D. Chen and G. Shen, J. Mater. Chem. A, 2013, 1, 2139 DOI: 10.1039/C2TA00125J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements