Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The HADDOCK web server for data-driven biomolecular docking

Abstract

Computational docking is the prediction or modeling of the three-dimensional structure of a biomolecular complex, starting from the structures of the individual molecules in their free, unbound form. HADDOCK is a popular docking program that takes a data-driven approach to docking, with support for a wide range of experimental data. Here we present the HADDOCK web server protocol, facilitating the modeling of biomolecular complexes for a wide community. The main web interface is user-friendly, requiring only the structures of the individual components and a list of interacting residues as input. Additional web interfaces allow the more advanced user to exploit the full range of experimental data supported by HADDOCK and to customize the docking process. The HADDOCK server has access to the resources of a dedicated cluster and of the e-NMR GRID infrastructure. Therefore, a typical docking run takes only a few minutes to prepare and a few hours to complete.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart of the HADDOCK server.
Figure 2: The HADDOCK server Easy interface.
Figure 3: Example of docking results from the HADDOCK server.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. van Dijk, A.D., Boelens, R. & Bonvin, A.M. Data-driven docking for the study of biomolecular complexes. FEBS. J. 272, 293–312 (2005).

    Article  CAS  Google Scholar 

  2. Bonvin, A.M. Flexible protein-protein docking. Curr. Opin. Struct. Biol. 16, 194–200 (2006).

    Article  CAS  Google Scholar 

  3. Janin, J. Assessing predictions of protein-protein interaction: the CAPRI experiment. Protein Sci. 14, 278–283 (2005).

    Article  CAS  Google Scholar 

  4. Méndez, R., Leplae, R., Lensink, M.F. & Wodak, S.J. Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures. Proteins 60, 150–169 (2005).

    Article  Google Scholar 

  5. Dominguez, C., Boelens, R. & Bonvin, A.M.J.J. HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    Article  CAS  Google Scholar 

  6. de Vries, S.J. et al. HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins (2007).

  7. van Dijk, A.D.J. et al. Data-driven docking: HADDOCK's adventures in CAPRI. Proteins 60, 232–238 (2005).

    Article  CAS  Google Scholar 

  8. de Vries, S.J., van Dijk, A.D.J. & Bonvin, A.M.J.J. WHISCY: What information does surface conservation yield? Application to data-driven docking. Proteins 63, 479–489 (2006).

    Article  CAS  Google Scholar 

  9. de Vries, S.J. & Bonvin, A.M. How proteins get in touch: interface prediction in the study of biomolecular complexes. Curr. Protein Pept. Sci. 9, 394–406 (2008).

    Article  CAS  Google Scholar 

  10. van Dijk, M. et al. Information-driven protein-DNA docking using HADDOCK: it is a matter of flexibility. Nucleic Acids Res. 34, 3317–3325 (2006).

    Article  CAS  Google Scholar 

  11. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  Google Scholar 

  12. Moreira, I.S., Fernandes, P.A. & Ramos, M.J. Protein-protein docking dealing with the unknown. J. Comput. Chem. (2009).

  13. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54 (Pt 5): 905–921 (1998).

    Article  CAS  Google Scholar 

  14. Schwieters, C.D., Kuszewski, J.J., Tjandra, N. & Clore, G.M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    Article  CAS  Google Scholar 

  15. Vranken, W.F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    Article  CAS  Google Scholar 

  16. Hennig, J., Hennig, K.D. & Sunnerhagen, M. MTMDAT: automated analysis and visualization of mass spectrometry data for tertiary and quaternary structure probing of proteins. Bioinformatics 24, 1310–1312 (2008).

    Article  CAS  Google Scholar 

  17. Comeau, S.R., Gatchell, D.W., Vajda, S. & Camacho, C.J. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20, 45–50 (2004).

    Article  CAS  Google Scholar 

  18. Tovchigrechko, A. & Vakser, I.A. GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 34, W310–314 (2006).

    Article  CAS  Google Scholar 

  19. Andrusier, N., Nussinov, R. & Wolfson, H.J. FireDock: fast interaction refinement in molecular docking. Proteins 69, 139–159 (2007).

    Article  CAS  Google Scholar 

  20. Mashiach, E. et al. FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 36, W229–W232 (2008).

    Article  CAS  Google Scholar 

  21. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005).

    Article  CAS  Google Scholar 

  22. Mustard, D. & Ritchie, D.W. Docking essential dynamics eigenstructures. Proteins 60, 269–274 (2005).

    Article  CAS  Google Scholar 

  23. Ritchie, D.W. & Kemp, G.J.L. Protein docking using spherical polar Fourier correlations. Proteins 39, 178–194 (2000).

    Article  CAS  Google Scholar 

  24. Lyskov, S. & Gray, J.J. The RosettaDock server for local protein-protein docking. Nucleic Acids Res. 36, W233–W238 (2008).

    Article  CAS  Google Scholar 

  25. Vriend, G. WHAT IF: a molecular modeling and drug design program. J. Mol. Graph 8, 52–56, 29 (1990).

    Article  CAS  Google Scholar 

  26. Tjandra, N. et al. Use of dipolar H-1-N-15 and H-1-C-13 couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 4, 732–738 (1997).

    Article  CAS  Google Scholar 

  27. Meiler, J., Blomberg, N., Nilges, M. & Griesinger, C. A new approach for applying residual dipolar couplings as restraints in structure elucidation. J. Biomol. NMR 16, 245–252 (2000).

    Article  CAS  Google Scholar 

  28. Tjandra, N. et al. Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nat. Struct. Biol. 4, 443–449 (1997).

    Article  CAS  Google Scholar 

  29. van Dijk, A.D., Fushman, D. & Bonvin, A.M. Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. Proteins 60, 367–381 (2005).

    Article  CAS  Google Scholar 

  30. van Dijk, A.D., Kaptein, R., Boelens, R. & Bonvin, A.M. Combining NMR relaxation with chemical shift perturbation data to drive protein-protein docking. J. Biomol. NMR 34, 237–244 (2006).

    Article  CAS  Google Scholar 

  31. van Dijk, A.D. & Bonvin, A.M. Solvated docking: introducing water into the modelling of biomolecular complexes. Bioinformatics 22, 2340–2347 (2006).

    Article  CAS  Google Scholar 

  32. Jmol: an open-source Java viewer for chemical structures in 3D.

  33. Chen, R., Li, L. & Weng, Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 80–87 (2003).

    Article  CAS  Google Scholar 

  34. Wiehe, K. et al. The performance of ZDOCK and ZRANK in rounds 6-11 of CAPRI. Proteins 69, 719–725 (2007).

    Article  CAS  Google Scholar 

  35. Schuttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta. Crystallogr. D. Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  Google Scholar 

  36. Wang, G. et al. Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIA(glucose) of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. EMBO J. 19, 5635–5649 (2000).

    Article  CAS  Google Scholar 

  37. Hubbard, S.J. & Thornton, J.M. NACCESS (Department of Biochemistry and Molecular biology, University Collage London, 1993).

  38. Linge, J.P., Habeck, M., Rieping, W. & Nilges, M. ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19, 315–316 (2003).

    Article  CAS  Google Scholar 

  39. Nilges, M., Gronenborn, A.M., Brunger, A.T. & Clore, G.M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 2, 27–38 (1988).

    Article  CAS  Google Scholar 

  40. van Dijk, M. & Bonvin, A.M. 3D-DART: a DNA structure modelling server. Nucleic Acids Res. (2009).

  41. Lu, X.J. & Olson, W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003).

    Article  CAS  Google Scholar 

  42. Lu, X.J. & Olson, W.K. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat. Protoc. 3, 1213–1227 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Netherlands Organization for Scientific Research (VICI grant no. 700.56.442 to A.B.) and the European Community (FP6 integrated Project SPINE2-COMPLEX, contract no. 032220; FP6 STREP project 'ExtendNMR', contract no. LSHG-CT-2005-018988; and FP7 e-Infrastructure 'e-NMR' I3 project, grant number 213010). The Dutch BiG Grid project with financial support from The Netherlands Organization for Scientific Research (NWO) is acknowledged for the use of the computing and storage facilities. We would like to thank J. Verhaal for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.M.J.J.B. is the primary author of the HADDOCK program. S.J.d.V. developed the HADDOCK web server and the Spyder framework. M.v.D. developed the nucleic acid functionality of the server and the graphical design of the server web site. A.M.J.J.B. supervised the project. S.J.d.V. wrote the paper.

Corresponding author

Correspondence to Alexandre M J J Bonvin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vries, S., van Dijk, M. & Bonvin, A. The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5, 883–897 (2010). https://doi.org/10.1038/nprot.2010.32

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.32

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing