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Abstract

The composition and properties of atmospheric Organic Aerosols (OAs) change on
timescales of minutes to hours. However, some important OA characterization tech-
niques typically require greater than a few hours of sample collection time (e.g. Fourier
Transform Infrared (FTIR) spectroscopy). In this study we have performed numerical5

modeling to investigate and compare sample collection strategies and post-processing
methods for increasing the time resolution of OA measurements requiring long sam-
ple collection times. Specifically, we modeled the measurement of Hydrocarbon-like
OA (HOA) and Oxygenated OA (OOA) concentrations at a polluted urban site in Mex-
ico City, and investigated how to construct hourly-resolved time series from samples10

collected for 4, 6, and 8 h. We modeled two sampling strategies – sequential and stag-
gered sampling – and a range of post-processing methods including interpolation and
deconvolution. The results indicated that relative to the more sophisticated and costly
staggered sampling methods, linear interpolation between sequential measurements
is a surprisingly effective method for increasing time resolution. Additional error can15

be added to a time series constructed in this manner if a suboptimal sequential sam-
pling schedule is chosen. Staggering measurements is one way to avoid this effect.
There is little to be gained from deconvolving staggered measurements, except at very
low values of random measurement error (< 5 %). Assuming 20 % random measure-
ment error, one can expect average recovery errors of 1.33–2.81 µg m−3 when using20

4–8 h long sequential and staggered samples to measure time series of concentration
values ranging from 0.13–29.16 µg m−3. For 4 h samples, 19–47 % of this total error
can be attributed to the process of increasing time resolution alone, depending on the
method used, meaning that measurement precision would only be improved by 0.30–
0.75 µg m−3 if samples could be collected over 1 h instead of 4 h. Devising a suitable25

sampling strategy and post-processing method is a good approach for increasing the
time resolution of measurements requiring long sample collection times.
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1 Introduction

Organic Aerosols (OAs) comprise 20–90 % of total, dry, sub-micrometer atmospheric
aerosol mass, and therefore have important influences on air quality and aerosol-
climate effects (Jimenez et al., 2009; Fuzzi et al., 2015). OAs can be emitted directly
into the atmosphere (Primary Organic Aerosol, POA), or formed in the atmosphere5

from the oxidation products of precursor gases (Secondary Organic Aerosol, SOA). It
is critical to distinguish between POA and SOA since they result from different (natu-
ral and anthropogenic) emission and transformation processes, and therefore require
separate control and regulation strategies. This separation is complicated by the fact
that OAs are complex mixtures of thousands of different individual organic compounds.10

A key feature of OA is that its composition and properties change and evolve contin-
ually in time (Jimenez et al., 2009). These changes happen on timescales of minutes
to hours. OA evolution occurs because organic compounds are subject to continual
oxidation throughout their lifetime in the atmosphere, while also mixing with freshly
emitted OA. Oxidation changes basic OA molecular properties such as size and de-15

gree and type of functionalization. These basic molecular properties determine OA
volatility, solubility and hygroscopicity, which in turn determine OA concentrations and
the ability of OA to take up water. These effects combined are relevant for assessing
aerosol impacts on health and climate. Observation of OA composition over time also
permits source resolution important for identifying major contributors to the OA burden20

in the atmosphere (Corrigan et al., 2013). To capture the evolution of OA composition
and properties in the atmosphere it is necessary to measure OA at high time resolu-
tion (Jimenez et al., 2009). We define time resolution here as the number of measured
values per unit time.

Due to their complexity OAs cannot be completely characterized by any single mea-25

surement technique. The full OA picture can only be captured by combining a range
of different measurement techniques. Depending on analytical detection limits, some
techniques require long sample collection times (typically greater than a few hours) to
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collect enough aerosol mass for analysis; these samples are often analyzed off-line in
a laboratory facility rather than in the field. Examples of analytical techniques requir-
ing longer sample collection times at atmospherically-relevant aerosol concentrations
include: Fourier Transform Infrared (FTIR) spectroscopy (4–24 h; Russell et al., 2011;
Frossard et al., 2014; Corrigan et al., 2013); and Nuclear Magnetic Resonance (NMR)5

spectroscopy (8–48 h; Finessi et al., 2012; Matta et al., 2003; Decesari et al., 2006).
In contrast, measurement integration times can be as short as minutes (aerosol mass
spectrometry) to 1 h (online GC-MS), and these are often associated with on-line (or
in-situ) instruments.

Measurements with longer collection times still provide molecular- and functional-10

group-level information that are valuable for OA characterization (Corrigan et al., 2013).
Therefore, to obtain diverse and detailed chemical information at high time resolution,
new approaches are desired. One approach is to develop new instrumentation and
hardware for rapid sample collection and analysis. For example, an online GC-MS in-
strument has been developed (Williams et al., 2006). Additionally, aerosol can be con-15

centrated in a particle concentrator prior to sampling, which can decrease FTIR sample
collection times from a few hours to 1 h (Maria et al., 2002). However, due to the costs,
complexities, and practical limitations involved (e.g. aerosol concentrators require very
large flow rates and virtual impactors are sensitive to operating conditions), instrument
development is not always a viable approach to improving time resolution. As an alter-20

native or complement to hardware design, it is possible to devise sampling strategies
and post-processing methods for constructing higher time resolution measurements
from a set of low resolution samples. This is the approach that we investigate in this
work.

We performed numerical modeling to compare the effectiveness of sampling strate-25

gies and post-processing methods for achieving 1 h time resolution with measurements
requiring 4, 6 and 8 h of sample collection time. We modeled two sampling strategies:
sequential sampling, where successive measurements are collected one after another,
and staggered sampling, where each new measurement is regularly initiated before

4
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termination of the previous measurement. The time resolution of a sequentially mea-
sured time series can be controlled (and increased) by interpolating between mea-
surements. The resolution of a time series obtained by staggered sampling can be
controlled through the choice of the staggering interval between samples. A time se-
ries resulting from staggered sampling is a running average of the true time series one5

seeks to measure. In the ideal case, mathematical deconvolution can be used to re-
trieve the original time series at the resolution of the staggering rather than sample col-
lection interval. For actual measurements, the process of deconvolution is complicated
by unavoidable perturbations to measurement signals due to random measurement
errors. Regularization techniques are required.10

We examined two concentration time series with contrasting diurnal patterns.
Hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA) are
major contributors to OA as identified by AMS and factor analytic decomposition (Zhang
et al., 2011). HOA is generally associated with primary organic aerosol (POA) emis-
sions and follows diurnal trends of traffic patterns in urban areas (i.e., early morning15

and late afternoons during weekdays). OOA is associated with SOA formed from pho-
tochemical oxidation in combination with aged background aerosol (de Gouw et al.,
2009), and exhibits a peak close to solar noon. The data set we used are AMS mea-
surements of HOA and OOA reported by Aiken et al. (2009) at a polluted urban site in
Mexico City, Mexico (T0 site MILAGRO field campaign; Molina et al., 2010). The data20

set is described fully in Sect. 2.
Section 3 formerly introduces and describes the different sampling strategies and

post-processing methods we investigated. Section 4 describes the numerical model-
ing used to apply these sampling strategies and post-processing methods to the test
data. The modeled conditions were designed primarily to represent the measurement25

of functional groups representing HOA and OOA by aerosol FTIR spectroscopy, since
this is the primary measurement technique of our research group. However, the results
should be applicable to any type of environmental sampling that can be characterized
with parameters falling within the ranges that we modeled.

5
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The numerical modeling results were grouped into three major categories: sequen-
tial (sequential sampling + interpolation), smeared (staggered sampling with no data
processing), and recovered (staggered sampling + deconvolution). In Sects. 5 and 6
the best post-processing methods are identified for the sequential and recovered cate-
gories, respectively. An overall comparison of the best-case sequential and recovered5

solutions with the smeared solution is made in Sect. 7. The advantages and disad-
vantages of each method are discussed, taking into account the attainability of the
modeled best-case scenarios and the practical costs involved. Section 8 discusses
the differences between the HOA and OOA results. Finally in Sect. 9 we discuss the
interpretation of the error results.10

2 Test case: HOA and OOA concentration time series

To test different methods of increasing time resolution we used time series of HOA
and OOA concentrations originally measured at high time resolution by aerosol mass
spectrometry at the T0 site in central Mexico City in 2006 during the MILAGRO field
campaign. The MILAGRO campaign and T0 site are described by Molina et al. (2010).15

The aerosol mass spectrometer measurements and the Positive Matrix Factorization
(PMF) analysis used to derive the HOA and OOA profiles and concentrations are de-
scribed by Aiken et al. (2009).

The HOA and OOA concentration time series are displayed in Fig. 1a. The origi-
nal measurements were collected over the period from 10 March to 31 March 2006.20

To avoid gaps in the time series greater than 1 h we only used the measurements
from 23:00 19 March 2006 to 10:00 LT 29 March 2006, which amounts to a total pe-
riod of 228 h. This period was chosen because 228 has many factors (7 greater than
12), which was desirable for numerically modeling the effect of the time series period
measured (see Sect. 4). The original measurements were averaged over 1 h intervals25

to generate hourly-resolution data for the inverse modeling and to smooth out some
of the high-frequency perturbations due to random measurement uncertainties. The

6
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hourly-resolution data certainly still contain measurement noise, but for the purposes
of our modeling we assume that these signals represent the true changes in HOA and
OOA concentrations at the T0 site over this time period.

Both the HOA and OOA concentration time series displayed strong and regular daily
peaks. The diurnally averaged profiles shown in Fig. 1b indicate that HOA concentra-5

tions peaked in the mornings around 07:00 LT. These HOA peaks were coincident with
the occurrence of a morning vehicle rush hour period and low atmospheric boundary
layer heights. This peak timing suggests the HOA was predominantly primary OA emit-
ted from combustion sources that was able to build up to high concentrations in the
shallow morning boundary layers (Aiken et al., 2009). The daily OOA concentration10

peaks were broader, beginning around 08:00 and extending to 15:00 LT. This peak tim-
ing suggests that the OOA concentration peaks were the result of photochemistry and
SOA formation (Aiken et al., 2009).

The two time series in Fig. 1 were chosen for this analysis because their daily peaks
were separated by only a few hours. If these HOA and OOA concentrations (or the con-15

centrations of functional groups or specific molecules representing these OA classes)
were measured at poor time resolution (> 4 h), the differences between the daily peaks
would not be clearly resolved. In that case it would not be possible to easily recog-
nize that the concentration peaks resulted from two distinct processes: primary parti-
cle emission and secondary aerosol formation. Therefore, the ability to clearly resolve20

the daily HOA and OOA concentration peaks provided an ideal test case for different
methods of obtaining hourly time resolution data from measurements requiring longer
sample collection times.

We note that it is not possible to measure HOA or OOA concentrations directly with
FTIR spectroscopy. FTIR spectroscopy is used to measure the absorption spectra of25

aerosol samples. Organic functional group and total OA concentrations can be derived
from these measured spectra (Russell et al., 2009; Takahama et al., 2013). The ideal
conditions we have modeled in this study could represent, for example, the measure-
ment of organic functional groups that represent HOA and OOA. Factor analysis can

7
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also be used to calculate the FTIR-equivalent of HOA and OOA species (Corrigan et al.,
2013). In this case the relevant time series would be multivariate (many wavelengths
or functional group abundances considered together) rather than univariate (concen-
trations of individual species). The theory developed in Sect. 3 can be extended to
the multivariate case. The multivariate extension is the topic of future work and is not5

covered in the present study. For the current, univariate case we chose to model the
measurement of HOA and OOA concentrations because these species display con-
trasting diurnal profiles and because they illustrate the variations in OA that can be
captured at high time resolution.

3 Sampling strategies and post-processing methods for increasing10

measurement time resolution

Two simulated sampling strategies were applied to the HOA and OOA test data: se-
quential and staggered sampling. A variety of different post-processing methods for
increasing measurement time resolution were investigated with the two sets of simu-
lated measurements. Figure 2 lists each of the methods applied and each method is15

explained in further detail below. For each method, the best-case scenario was consid-
ered in order to determine the theoretically optimal combination of sampling strategy
and data processing method for increasing measurement time resolution.

3.1 Sequential sampling

Aerosol samples (and most other environmental samples) are typically collected se-20

quentially, one after another. We refer to this as sequential sampling. Sequential mea-
surements are separated by an interval of time (δτ) equal to the individual sample
collection or measurement integration time (∆τ). Post-measurement, the resolution of
sequentially collected measurements can be increased by interpolating between suc-
cessive points with some chosen function. Here we consider two interpolation meth-25

8
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ods: step function interpolation (Fig. 3a), and linear interpolation (Fig. 3b). Although
it seems likely that linear interpolation will better represent the original time series
we have tested step interpolation as this case is often assumed (at least implicitly).
For both interpolation cases we represented a single measurement by the midpoint of
a given sample: each measurement occurs at time tmid = tstart+∆τ/2 = tend−∆τ/2). It5

is also possible to represent individual measurements by the start (tstart) or endpoints
(tend) of each sample. We do not consider those options here because the modeled
results do not represent the original time series as well as the simulations with tmid.

3.2 Staggered sampling

Aerosol sample collection can also be staggered, such that each new sample is regu-10

larly initiated before termination of the previous sample. By separating successive mea-
surements by a staggering interval δτ less than the individual sample collection time
∆τ, it is possible to increase measurement time resolution. The principle of combin-
ing multiple, overlapping, lower-resolution samples in order to construct higher spatial-
and temporal-resolution information has been used extensively for image processing15

(Borman and Stevenson, 1998; Shechtman et al., 2005).
Staggered sampling effectively applies a running average to a time series of aerosol

concentrations, which produces a smeared version of the original signal, denoted here
as g(t). If f (t) represents the true change in aerosol concentrations at some point in the
atmosphere from time t = 0 to T , g(t) is the product of the convolution of a boxcar kernel20

function h(∆τ) and f (t). This is a specific example of a Fredholm integral equation of
the first kind:

g(t) =

T∫
0

h(∆τ)f (t)dt. (1)

In the case of measured data a smeared signal is more appropriately represented
by a finite series of n measurement points g separated by δτ than by the continuous25

9
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function g(t). In addition, all measurements are subject to some amount of measure-
ment uncertainty ε. A discrete formulation of Eq. (1) that more accurately reflects the
actual measurement process is the matrix equation:

g = Hf +ε, (2)

where H is a convolution matrix and f is a finite series of m data points representing5

f (t). The temporal resolution of f is δτ, the temporal resolution of g. For staggered
samples, the convolution matrix H is an n-by-m toeplitz matrix. Each of the n rows of
H contains a shifted copy of a boxcar function with k = ∆τ/δτ non-zero values equal
to 1/k. In general, n =m+k −1. Figure 5 displays examples of a true time series f of
HOA concentrations and corresponding smeared time series without (Fig. 5a) and with10

(Fig. 5c) measurement error.
Equation (2) suggests two post-processing methods for recovering a higher time

resolution estimate f̂ of the true time series f from staggered measurements:

1. The measured time series is taken as an approximation of the true time series.
No further data processing is applied.15

2. One attempts to recover f̂ through a deconvolution operation. For example, if H+

is the pseudo-inverse matrix of H one can solve the following inverse problem

f̂ = H+g. (3)

In principle, the true aerosol concentrations f can be recovered precisely from a set
of staggered measurements g and solution of Eq. (3) (Fig. 5b). However, in practice20

the problem is ill-posed. The small perturbations ε to g due to random measurement
uncertainty are strongly amplified in f̂ . One can only ever hope to find a solution f̂ that
is a good approximation of f (Fig. 5d and e).

A variety of different deconvolution methods exist for finding the inverse solution of
Eq. (2). For example, the convolution theorem (Arfken and Weber, 2005) states that25

10
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deconvolution amounts to simple division of the frequency domain representations of
f and H (which are typically obtained by Fourier and/or Z transforms). This deconvolu-
tion approach has recently been used to improve the time resolution of slow-response,
broadband terrestrial irradiance measurements (Ehrlich and Wendisch, 2015). How-
ever, we choose to frame the deconvolution problem with the discrete matrix-based5

approach shown by Eq. (3) because it is well suited to the natural, discrete form of
measurement data, does not assume periodicity of the time series being studies (as
taking Fourier transforms would implicitly do), and allows easy and intuitive implemen-
tation of regularization methods (discussed in further detail below). For this work, we
use a well-established and tested software package for inverse modeling by regular-10

ization (Regularization Tools Version 4.1 for MATLAB Hansen, 2007).
A further limitation of measured data relates to the extra k measurement values at

the boundaries of g (recall for an n-by-m H matrix, n =m+k −1 where k = ∆τ/δτ).
These boundary elements correspond to partial samples with integration times <∆τ.
In some experiments, it may be possible to obtain the boundary values of g by initi-15

ating and concluding experiments with partial samples. However, this is not possible
in experiments where ∆τ corresponds to the lowest possible sampling time required
to exceed the detection limit. Therefore, only a truncated measurement vector gt with
n−2(k−0.5) elements will be accessible to measurement in most cases (Fig. 4). There
are two general approaches for deconvolving a system with gt:20

1. Accept that the boundary values cannot be known and solve the resulting sys-
tem of equations where H has more columns than rows, further adding to the
ill-posedness of the problem. We refer to this as the truncated method for dealing
with unknown boundary values.

2. Pad the truncated measurement vector gt so that it has the same number of ele-25

ments as the ideal, full convolution product g. The resulting system of equations
will be overdetermined but g will contain estimated (or guessed) values as well as
actually measured values.

11
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For option 2), a variety of different padding methods exist (e.g., Lane et al., 1997).
Simple methods include the repetition of the final boundary values (uniform padding)
or a reflection of the values about the boundaries (reflective padding). These padding
methods are illustrated in Fig. 4. More refined methods concede that boundary con-
ditions cannot be known a priori (e.g. Aristotelian boundary conditions, Calvetti et al.,5

2006). Here we consider only the simple methods of uniform and reflective padding and
compare the results with those obtained from the truncated method (option (1) above)
and also from the ideal scenario where the full measurement vector g is accessible to
measurement.

To deal with the sensitivity of the solution to measurement uncertainty perturbations10

and the loss of boundary measurements some form of regularization is required. Reg-
ularization is the introduction of additional information in order to stabilize a solution. In
this context, regularization can be achieved by modifying the convolution matrix H so
that the components of the matrix that are responsible for explaining most of the varia-
tion in the underlying data are emphasized, while the components that are associated15

with high frequency measurement noise are deemphasized or removed. Regularization
methods can be defined through the Singular Value Decomposition (SVD) components
of H. SVD is also an important practical tool for solving Eq. (3) (Hansen, 2007) and is
defined as

H = UΣVT, (4)20

where U is an m×m matrix consisting of the left singular vectors u1, . . .,um, V is an
n×n matrix consisting of the right singular vectors v1, . . .,vn, and Σ is an m×n diagonal
matrix consisting of diagonal elements σi arranged in descending order. The σi are
non-negative values and characteristic of a given matrix. They are known as singular
values. Small singular values are responsible for making f̂ sensitive to perturbations in25

g (Hansen, 2002).
For example, Truncated SVD (TSVD) regularization is the most straightforward reg-

ularization method. TSVD involves retaining the first k SVD components of H, which
12
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correspond to the largest singular values σi , and simply discarding the rest. Tikhonov
regularization is another common regularization method (Tikhonov and Arsenin, 1977).
It involves minimizing a weighted sum of the residual and solution norms, with weight-
ing parameter λ determining the importance given to the solution norm, or smoothness
of the solution. The pseudo-inverse matrix is then defined by each method as (Aster5

et al., 2012)

H+ = VkS−1
k UT

k TSVD

H+ = (HTH+ λI)−1HT Tikhonov, (5)

where the subscript k indicates the number of components retained, and I is the identity
matrix. As with TSVD, the effect of Tikhonov regularization is to favor the large singular10

values and deemphasize small singular values. It can be seen that both regularization
methods require the introduction and setting of an additional parameter: k for TSVD
and λ for Tikhonov regularization. Figure 5d and e illustrate how critical it is to set
the regularization parameter to an approriate value. If too many singular values are
retained (large k) or emphasized (small λ) the solution is highly unstable with strongly15

amplified perturbations. If too few singular values are retained (small k) or emphasized
(large λ) the solution is overly smoothed.

4 Description of the modeling

Numerical inverse modeling was conducted with the two test time series to compare
the different methods of increasing time resolution (Fig. 2). Table 1 lists the model pa-20

rameters and their values. The model parameters and values were chosen primarily to
represent aerosol sampling for FTIR spectroscopy as detailed further below. However,
the calculations are more general, and the results of the numerical modeling are appli-
cable to any type of environmental sampling that can be characterized by parameters
falling within the ranges indicated in Table 1.25

13
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We considered filter sample lengths of 4, 6, and 8 h. A minimum sample length of 4 h
represents a typical value for the shortest possible sampling period required for aerosol
FTIR spectroscopy (assuming the aerosol is not concentrated before sampling; if the
sample is concentrated, FTIR sample collection time can be as short as 1 h, Maria
et al., 2002). Sequential sampling was modeled by averaging the true aerosol concen-5

trations over sequential intervals of ∆τ hours (e.g. circle markers in Fig. 3) centered at
the sample midpoints. Staggered sampling with a staggering interval δτ of 1 h was sim-
ulated by constructing a convolution matrix H (which depends on ∆τ) and evaluating
Eq. (2).

The period of the time series (T ) measured by sequential and staggered sampling10

was varied from 12 to 228 h. To ensure that the same, full, 228 h long HOA and OOA
time series were used for each value of T , multiple time series segments were modeled
for each T < 228 h, and the results are reported as averages over these multiple seg-
ments. For example, for T = 12h, 19 (= 228/12) separate time series segments were
modeled. For T = 228 h only a single HOA and a single OOA input time series were15

required.
Initial testing indicated that the start time of a series of sequential samples affected

the ability of the resulting measurement signal to represent the true aerosol concen-
trations. For example, if a long filter sample is initiated at the apex of a sharp peak
in concentration, the resulting measurement does not represent the true changes in20

aerosol concentrations well. This does not occur for staggered filter samples since
more than one sample is collected during a sharp peak (assuming δτ < peak width,
which is the case for our test data). Therefore, multiple sequential time series but only
a single staggered time series were generated for each modeling run. For example for
∆τ = 4 h, 4 unique sequential sampling schedules were possible as defined by the fol-25

lowing filter start times: [. . ., 04:00, 08:00, . . .], [. . ., 05:00, 09:00, . . .], [. . ., 06:00, 10:00,
. . .], and [. . ., 07:00, 11:00, . . .]. For ∆τ = 6 h, 6 unique sequential sampling schedules
were possible, and for ∆τ = 8 h, 8 unique schedules were possible.

14
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For both the sequential and staggered cases perturbations due to random mea-
surement error (ε, see Eq. 2) were added to the simulated measurements. Relative
measurement errors (κm) of 0, 1, 5, 10, 20 and 30 % were considered. A relative mea-
surement error of 20 % is typical for aerosol FTIR spectroscopy (Russell, 2003). The
relative errors were applied to aerosol mass, not concentration, since this is the quan-5

tity actually probed by FTIR spectroscopy (we use the subscript m to denote mass
units). A sampling flow rate of 10 lpm was multiplied by the given sampling intervals ∆τ
to calculate the sampling volumes used to convert between mass and concentration.
We assumed that the relative error in the measurement of sampling flow rate was 2 %.
The relative error in the measurement of the sampling time interval ∆τ was assumed to10

be so small in comparison to the errors in measured mass and flow rate that it could be
neglected. The relative uncertainties in measured mass and flow rate were summed in
quadrature to calculate total, relative uncertainty in aerosol concentration, denoted as
κc, where the subscript c indicates concentration units.

The relative error was combined with a fixed error term (σ0, m). The fixed error term15

represents, for example, the standard deviation of masses detectable on blank filter
samples. The fixed error term is typically on the order of 0.1 µg for aerosol FTIR sam-
ples on Teflon filters. We conservatively set σ0, m to 0.5 µg, which is at the upper end
of the range of blank uncertainty values measured in previous FTIR studies (Maria
et al., 2003; Gilardoni et al., 2009, 2007). A fixed error of 0.5 µg is consistent with the20

selected minimum sampling interval of 4 h (Table 1). Defining detection limit as 3σ0, m,
4 h of sampling would be required to ensure that almost all (> 97 %) of the organic
functional group samples representing HOA and OOA collected during the time period
covered by the test time series were above detection limit (Fig. S1 in the Supplement).
We also modeled σ0, m = 0.1 µg. The results were insensitive to this change so are not25

included here.
Taking the relative and fixed errors, total measurement error σ as a function of con-

centration c was calculated with the linear error model described by Eq. (6). Linear
dependance of total measurement error on concentration is a widely applicable as-

15
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sumption (e.g., Ripley and Thompson, 1987). σ0,c is in units of concentration and is
therefore a function of a given ∆τ and the sampling flow rate. The concentration pertur-
bations ε due to the total measurement error were assumed to be normally distributed
around a mean of 0 with σ representing one standard deviation of the distribution:

σ(c) = κcc+σ0,c5

ε ∼N (0,σ(c)). (6)

For κm = 0 %, σ(c) and hence ε were set to 0 to represent the ideal case of abso-
lutely no perturbations due to measurement error. For each modeling run with non-zero
κm, 20 different realizations of the randomly generated error perturbations ε were gen-
erated and added to the measurement signal. Results are reported as averages over10

the 20 different realizations of each noisy measurement signal.
Hourly-resolved time series were constructed from the simulated measurement sig-

nals using the post-processing methods outlined in Fig. 2 as follows. The sequential-
interpolated solutions were constructed by interpolating between sequential data points
at the chosen resolution of 1 h with step and linear functions. The smeared solutions15

required no further data processing: the time series g produced by simulating stag-
gered sampling were taken as is. The deconvolution solutions were obtained by first
modifying the simulated measurement vectors according to the chosen boundary value
method: full, the full measurement vectors were used in subsequent calculations; trun-
cated, values at the boundaries of the measurement vectors corresponding to partial20

samples were removed (and a corresponding truncated convolution matrix Hr was cal-
culated by removing rows in H corresponding to these boundary values); uniformly and
reflectively padded, boundary values corresponding to partial samples were removed
but the measurement vector was then padded back to the original length of g via the
uniform and reflective methods, respectively.25

Following treatment of the boundary values, deconvolution with TSVD and Tikhonov
regularization was performed with the respective functions in Regularization Tools Ver-
sion 4.1 for MATLAB (Hansen, 2007). These functions utilize the SVD of the given H

16
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to find the pseudo-inverse matrix H+ and solve Eq. (3). The choice of the TSVD and
Tikhonov regularization parameters is critical as illustrated in Fig. 5d and e. Since we
aimed to model the best-case-scenario and we had access to the true time series,
we chose optimal regularization parameters k and λ that minimized the RMSE error
between the hourly-resolved solution and true time series for each simulation run. In5

reality, the true time series one seeks to measure can not be known a priori and one
must employ an alternative parameter choice method based only on available mea-
surement data. A number of such methods have been devised (e.g., Hansen, 2007)
but their investigation is beyond the scope of this work. It must be stressed that less
accurate solutions would be obtained with these parameter choice methods than with10

the optimal, RMSE-minimizing method employed here.
The post-processing methods for increasing time resolution were judged according

to two criteria:

1. Recovery Error (RE): the overall ability to recover the true time series from a set
of simulated measurements. We define RE as the Mean Absolute Error (MAE)15

between a given calculated, hourly-resolved time series f̂ consisting of n data
points and the corresponding true, original time series f :

RE = MAE =
1
n

n∑
i=1

|f̂i − fi |. (7)

RE is the combination of two types of errors: the error due to the measurement
noise simulated by the linear error model described by Eq. (6) (which we denote20

as Measurement Error, ME), and the error resulting from increasing the measure-
ment time resolution from 4, 6, or 8 to 1 h via one of the post-processing methods.
We denote this latter error as Upsampling Error, UE (upsampling is a signal pro-
cessing term used to describe the use of interpolation to increase the resolution
of a signal; our use of the term here is not strictly applied to interpolation, but to25

methods of increasing resolution in general). UE can be calculated by the follow-
17
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ing equation

UE = RE−ME = RE− 1
n

n∑
i=1

|fi − f ′
i
|, (8)

where ME is defined as the mean absolute error between a true time series f con-
sisting of n data points and a time series f ′ produced by a hypothetical instrument
subject to the same random error modeled by our linear error model, but capable5

of measuring at hourly rather than 4–8 h time resolution. We choose to report the
bulk of the results as RE to represent the total error resulting from the upsampling
of noisy measurements. In the final discussion Sect. 9 we also report typical UEs
to illustrate how much of the total error can be attributed solely to the upsampling
process.10

2. Peak capture: the specific ability to recover the magnitude and timing of the daily
concentration peaks (indicated by the circle markers in Fig. 1). The ability of
a method to accurately capture peaks in concentration is important for health
and regulatory concerns (e.g. for identifying exceedances of particulate matter air
quality guidelines). We assess peak capture through a peak plot, which displays15

the mean difference between the daily peak concentrations in a calculated hourly-
resolved time series and the corresponding peak concentrations in the true time
series, against the mean difference between the times that the peaks occur in the
calculated time series and in the corresponding true time series.

In the discussion of the modeling results we pay particular attention to the measure-20

ments of 57 h long time periods with 4 h samples subject to 20 % measurement error.
This represents a typical FTIR experiment. However, the dependence of recovery error
on time series period, filter sample length, and the level of measurement error is also
discussed.

18
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5 Sequential sampling results

This section identifies the best representation (step or linear) of atmospheric con-
centrations using sequential samples and discusses the issue of sequential sampling
schedule. These questions are answered with reference to overall recovery error (RE,
Sect. 4) since the ability to capture peak concentrations with sequential samples does5

not depend on the interpolation method employed (unless higher order interpolation
functions are used).

Figure 6a–f shows the dependence of RE on the start time of the second sample of
the day for HOA and OOA time series that were constructed by step and linear inter-
polation between sequential samples of sampling length (∆τ) 4, 6, and 8 h (T = 57 h10

and κm = 20 %). The start time of the second sample of the day represents sample
schedule. For both HOA and OOA, RE is generally lower for the linearly interpolated
solutions than the step interpolated solutions, and RE increases with increasing ∆τ.
Figures S2 and S3 in the Supplement indicate that linear interpolation results in lower
recovery error than step interpolation over the full ranges of simulated time series pe-15

riods and relative measurement errors, respectively. Therefore not surprisingly, linear
interpolation is a more effective method for post-processing sequential measurement
than step interpolation.

Fig. 6g plots the maximum difference in RE between two different sampling sched-
ules (designated as maximum ∆RE) against ∆τ. Maximum ∆RE can be thought of the20

extra error that may be incurred if a bad sampling schedule is chosen for a particular
type of time series. For ∆τ = 4 h, RE is relatively independent of the particular sampling
schedule employed. Additional error of 0.13 to 0.20 µg m−3 is possible if the subopti-
mal sampling schedule is chosen. This compares with mean REs of 1.49 for HOA and
1.85 µg m−3 for OOA time series constructed with linear interpolation. Maximum ∆RE25

increases with ∆τ. For ∆τ = 8 h, additional error of 0.42 to 0.90 µg m−3 is possible if the
suboptimal sampling schedule is chosen. In comparison mean REs were 1.96 for HOA
and 2.51 µg m−3 for OOA time series constructed by linear interpolation. Since the op-

19
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timal sequential sampling schedule cannot be known a priori, the additional error that
may be incurred due to this scheduling effect must be kept in mind when interpolating
between sequential samples, particularly for measurements requiring sample collection
times > 6 h. This scheduling effect is not as important for staggered samples, assuming
the staggering interval is small enough, since measurement data points are collected5

more frequently.

6 Deconvolution results

Eight different combinations of regularization and boundary value methods (Fig. 2)
were used to recover time series by deconvolution for each set of simulated staggered
measurements. For T = 57 h and κm = 20 %, Fig. 7 displays the mean RE of decon-10

volution solutions recovered by TSVD and Tikhonov regularization as a function of the
boundary value method employed (tiled by ∆τ and time series type), and Fig. 8 displays
a peak plot for each combination of regularization and boundary value method.

At this relatively high level of measurement error, only a small reduction in RE is
gained from having access to the full measurement vector (which would require the15

collection of partial samples, Sect. 3). Furthermore, there is little difference in the mean
RE of the 3 methods that assume boundary values are not accessible to measurement:
no clear and consistent advantage can be discerned between the truncated, uniformly,
and reflectively padded methods for this T and κm. Assuming the boundary values are
known, the average RE of HOA time series sampled with 4 h filters and recovered with20

TSVD regularization is 1.16 µg m−3. If the boundary values are not known, the corre-
sponding value averaged over the three other boundary value methods is 1.34 µg m−3.
The corresponding OOA-TSVD results tell the same story: RE of 1.42 µg m−3 with the
full measurement vector vs. an average of 1.65 µg m−3 over the 3 methods without. The
results are similar over the full range of time series periods simulated (Fig. S4 in the25

Supplement).

20
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In addition, at this level of measurement error similar recovery errors are obtained
with TSVD and Tikhonov regularization. It is only for the OOA time series measured
with 4 h samples that a difference between the two regularization methods can be
clearly discerned, with TSVD regularization resulting in lower recovery error than
Tikhonov regularization. The peak plots (Fig. 8) indicate that also in terms of peak5

capture no boundary value method is clearly better than the others for κm = 20 %. So-
lutions with TSVD regularization are marginally better at capturing peak concentrations
than solutions with Tikhonov regularization, although the differences are still well within
1 standard deviation of all the modeled solutions (vertical bars in Fig. 8). On average,
for any of the methods, HOA peak concentrations averaging 15.8 µg m−3 can be repro-10

duced to within 4 µg m−3 and OOA peak concentrations averaging 17.8 µg m−3 can be
reproduced to within 2 µg m−3. The daily HOA and OOA peak times can generally be
reproduced to within 1 h.

If the level of random measurement error is very low, less than approximately 5 %,
recovery error is strongly reduced if one has access to the full measurement vector15

(Fig. S5 in the Supplement). If partial samples cannot be known, solving the system of
equations with a truncated measurement vector results in lower error than padding the
measurements out via the uniform or reflective methods. Taking all of these together,
although there are only small differences in terms of both RE and peak capture between
each of the eight deconvolution solutions we have modeled, we recommend TSVD20

regularization with the truncated method for dealing with boundary values if partial
samples cannot be known. In addition to the analysis presented in this work, further
advantages of TSVD regularization are that it is conceptually simple and intuitive, and
it is straightforward to apply through the SVD products of the convolution matrix H.

7 Overall comparison of methods25

Based on the findings of the previous two sections (Sects. 5 and 6) we now make
an overall comparison of methods for increasing measurement time resolution in the

21
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context of the practical considerations and limitations of each method. Interpolation
between sequential measurements is the least sophisticated, cheapest and easiest of
the methods for increasing time resolution out of those that we have investigated. Stag-
gered sampling requires multiple sampling lines to collect multiple samples at once.
More staggered samples are required to cover a given time period than would be re-5

quired to cover the same time period with sequential samples. This extra cost of stag-
gered sampling compared to sequential sampling is illustrated in Fig. 9. For example,
to measure a time series of period 64 h, 61 staggered 4 h samples would be required
compared to only 16 sequential 4 h samples. The sample number difference is even
greater for larger ∆τ. To measure a time series of period 64 h, 57 staggered 8 h sam-10

ples would be required compared to only 8 sequential 8 h samples.
Attempting to recover the true time series from a set of staggered measurements

by deconvolution requires even further effort and analysis time and expertise. Al-
though tried and tested deconvolution and regularization algorithms are readily avail-
able (Hansen, 2007), the choice of a reasonable regularization parameter may not be15

straightforward. If a bad regularization parameter is chosen substantial additional error
could be added to a solution (Fig. 5). Given the extra cost of staggered sampling and
the error risk associated with regularization, it is necessary to establish precisely what,
if anything, can be gained from the use of these more sophisticated tactics for a variety
of different experimental conditions.20

Figure 10 displays the mean recovery error as a function of κm for HOA and OOA
time series processed by the sequential, smeared, and recovered methods (T = 57 h
and ∆τ = 4 h). Two sequential cases are displayed. Both were obtained by linear in-
terpolation. “Sequential low” corresponds to the sampling schedule that resulted in the
lowest RE, and “sequential high” corresponds to the sampling schedule that resulted25

in the highest RE. The RE difference between these two cases is the sequential sam-
pling effect identified in Fig. 6g. The recovered solutions were produced by deconvolu-
tion with TSVD regularization and the truncated method for dealing with inaccessible
boundary values (Sect. 6). As expected, in the absence of measurement error, recov-
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ering a time series through the deconvolution of staggered measurements is the best
method for achieving high time resolution. On average, true concentrations can be re-
produced to within 0.25 µg m−3 for HOA and 0.48 µg m−3 for OOA with this method (RE
is not zero because of the truncated measurement vector). However, measurement
error is unavoidable, and the presence of only 5 % error is sufficient for the recovered5

method to lose its RE advantage over the less sophisticated sequential and smeared
methods.

At the 20 % level of relative measurement error characteristic for aerosol FTIR
spectroscopy, the differences in mean RE between the optimally-scheduled sequen-
tial, smeared, and recovered are very small. For HOA, mean RE is 1.49, 1.39, and10

1.33 µg m−3 for the sequential low, smeared and recovered time series, respectively.
However, if a suboptimal sampling schedule is chosen, mean RE for the HOA time
series could be as high as 1.58 µg m−3. In a real experiment there would be no way
of knowing what the optimal sequential sampling schedule was (unless a complemen-
tary independent measurement was available), and therefore whether a sequentially15

measured time series would be subject to the higher amount of error or not. Collecting
staggered samples is one option for avoiding the sample scheduling effect.

The peak plots corresponding to the REs shown in Fig. 10 for κm = 20 % are dis-
played in Fig. 11. Both the optimally- and suboptimally-scheduled sequential solutions
are slightly worse at capturing peak concentrations then the smeared and recovered20

solutions. For example, peak HOA concentrations are underestimated by an average
of 4.28 µg m−3 in the optimally-scheduled sequential solution compared to 3.32 and
2.74 µg m−3 for the smeared and recovered solutions respectively. For the OOA time
series, peak concentration values are reproduced, on average, very accurately in the
smeared and recovered solutions, being overpredicted by only 0.85 and 0.43 µg m−3,25

respectively. The same peak concentrations are underestimated by 1.94 µg m−3 in the
optimally-scheduled sequential solution.

A key variable included in our numerical model is the filter sample length ∆τ. Fig-
ure 12 displays mean RE against ∆τ for the same cases shown in Figs. 10 and 11.
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Again T = 57 h and κm = 20 %. It is interesting to note that mean RE does not depend
strongly on ∆τ for the optimally-scheduled sequential, smeared and recovered cases.
For example, if 4 h samples are used to construct an hourly-resolved OOA time series
using the smeared method, true concentrations can be reproduced to within an aver-
age of 1.81 µg m−3. If 8 h samples are used to construct the same hourly-resolved time5

series via the same smeared method, the reproduction error is only slightly greater,
2.15 µg m−3. However in the case of suboptimally-scheduled sequential measurements
the increase in RE with ∆τ is considerably greater because the sequential sampling
scheduling effect increases with increasing sample collection time (Fig. 6g)

Whether or not the differences between the sequential, smeared and recovered10

methods are significant depends on the specific aims of a given experiment. If the
priority is to achieve low overall error over long time periods when measuring a con-
centration time series with 4 h samples subject to 20 % relative measurement error,
linear interpolation between sequentially collected samples is likely to be a suitable
enough choice for achieving hourly time resolution. Additional error may be inadver-15

tently introduced through choice of a suboptimal sampling schedule but the extra prac-
tical costs of staggered sampling (Fig. 9) would be avoided. On the other hand, if one
was particularly interested in accurately measuring peak OA concentrations and had
the ability to run multiple sampling lines at once, then staggered sampling with no
further data processing would be the best option for achieving hourly time resolution20

(Fig. 11). A combination of sequential sampling during stable OA concentration periods
and staggered sampling during peak periods (e.g. morning rush hour, afternoon peak
in photochemistry) could be an excellent strategy for intensive field campaigns.

Our analysis suggests that in scenarios similar to the case studied in this work there
is little benefit to be gained (in terms of both overall error and peak capture) by running25

staggered measurements through a deconvolution algorithm. This is surprising given
that in the absence of perturbations to a measurement signal, true concentrations can
be recovered precisely from a set of staggered measurements (Fig. 5b). However, once
non-ideal, practical realities such as random measurement error (even as low as 5 %)
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and the inability to collect partial samples are taken into account, signals recovered by
deconvolution approximate true concentrations only as well as smeared and interpo-
lated signals, even with optimal choice of regularization parameter. Considering that in
a real experiment the optimal regularization parameter is not known, we do not recom-
mend the deconvolution of staggered measurements as a method for increasing time5

resolution, unless the level of relative measurement error is extremely low (< 1 %).

8 Comparison of HOA and OOA results

Differences between the HOA and OOA test time series were reflected in the mod-
eled recovery errors and peak concentrations. The absolute concentrations aver-
aged (±1 standard deviation) 4.99±4.85 µg m−3 in the HOA time series compared to10

8.09±5.66 µg m−3 in the OOA time series. The daily HOA concentration peaks were
sharp and occurred early in the mornings, while the daily OOA concentrations peaks
were broad and generally extended throughout the full afternoon (Fig. 1). For all post-
processing methods, the HOA REs were ∼ 0.5 µg m−3 less than the OOA REs, which
is likely because average HOA concentrations were lower than average OOA concen-15

trations. However, OOA peak concentrations were captured more precisely than HOA
peak concentrations. On average, HOA peak concentrations were underestimated by
2.34–4.16 µg m−3 more than OOA peak concentrations (Fig. 11). We speculate that
sharper peaks are more difficult to reproduce by upsampling low time resolution mea-
surements than broader peaks. Systematic studies are required to further explore how20

time series characteristics (e.g. average concentrations and peak widths) affect various
metrics of recovery.

9 Interpretation of errors

The REs (Eq. 7) we have reported indicate to within what concentration range one
can measure true aerosol concentrations, on average, with hourly resolved time series25
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constructed from noisy measurement samples of length 4–8 h. These REs are a com-
bination of random measurement error (ME, which we modeled with the linear error
model described by Eq. 6) and Upsampling Error (UE), as explained in Sect. 4. UE
represents the error associated solely with the increase in time resolution from 4–8 to
1 h. UE can be calculated with Eq. (8).5

To illustrate how the errors break down for the case T = 57 h and ∆τ = 4 h, Fig. 13
displays the upsampling errors, and the UE fractions of the total error as a function of
κm for HOA and OOA time series constructed for the sequential high and low, smeared
and recovered cases. In each case, the UE/RE fraction decreases substantially with
increasing κm from 76–84 % at κm = 1 to 10–27 % at κm = 30 %. For the sequential and10

smeared cases this is because UE decreases and ME increases with increasing κm.
For the recovered case, absolute UE is less dependent on κm (it is always less than
0.83 µg m−3), and the decreasing UE/RE fraction results mainly from the increase in
ME with increasing κm. The inverse relationship between UE/RE and κm indicates
that although total recovery error decreases with an increase in analytical accuracy15

(decrease in κm, Fig. 10), the fraction of the total error resulting from the upsampling
process increases.

For FTIR levels of relative measurement error of 20 %, UEs represent only 19–47 %
of total RE in the sequential, smeared and recovered cases. In absolute terms, 0.30–
0.75 µg m−3 of error can be attributed specifically to the process of constructing an20

hourly-resolved time series from a set of 4 h samples. This means that if FTIR sample
collection was improved so that it was possible to collect samples over 1 h instead of
4 h, the precision of the resulting hourly-resolved measurements would be improved by
only 0.30–0.75 µg m−3 relative to hourly-resolved time series constructed from 4 h sam-
ples (the accuracy of the measurement will depend on the analytical bias and measure-25

ment artefacts of the technique in question). This statement is true even for the simple
case of linear interpolation between suboptimally scheduled sequential measurements.
This absolute upsampling error range represents only 1.7–4.7 % of the average daily
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HOA and OOA peak concentrations, and 3.7–15.2 % of the average of all HOA and
OOA concentrations in the test time series (Fig. 1).

10 Conclusions

Aerosol measurement techniques with high analytical detection limits require long
sample collection times at atmospherically relevant concentrations, which results in5

poorly time-resolved measurements. We investigated combined sampling and post-
processing methods for increasing the resolution of time series produced with 4–8 h
long samples. The absolute concentrations we sought to recover ranged from 0.13–
29.16 µg m−3 with mean values of 4.99 (HOA) and 8.09 µg m−3 (OOA) (Fig. 1). Lin-
ear interpolation between sequentially collected samples is cheap, simple and surpris-10

ingly effective in terms of both overall recovery error and daily peak capture. How-
ever, sequential samples are subject to a sample schedule effect, which can add up to
0.56 µg m−3 to overall recovery error (Fig. 6). Staggered sampling avoids the sample
schedule effect and it is up to the experimenter to decide if the extra practical costs
of staggered sampling (e.g. Fig. 9) are worth this benefit. Recovering a time series15

through deconvolution of staggered measurements is only useful at low values of rel-
ative measurement error. For κm > 5 % the recovery errors of recovered solutions are
comparable to those obtained via the smeared method (Fig. 10). Since deconvolution
costs extra analysis time and expertise, and there is a risk that further error can be
added to a solution through the bad choice of regularization parameter, we do not20

recommend this approach for post-processing staggered measurements in scenarios
similar to the case studied in this work.

Our numerical modeling has indicated that for κm = 20 %, one can measure con-
centrations to within a range of 1.33–2.25 µg m−3, on average, with hourly resolved
time series constructed from samples of length 4–8 h using the best-case sequential,25

smeared or recovered methods. Daily peak concentrations can be reproduced to within
an average of 0–4.3 µg m−3 and peak times can be reproduced to within an hour. Sur-
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prisingly, for the case T = 57 h and ∆τ = 4 h, only 19–47 % of the overall recovery error
can be attributed to the actual uspampling process. In absolute terms, this indicates
that measurement precision would only be improved by 0.30–0.75 µg m−3 if samples
could be collected over 1 h instead of 4 h.

The total and upsampling errors we have reported represent only small fractions of5

the average daily peak concentrations in the HOA and OOA test time series. Therefore,
post-processing methods are effective techniques for increasing the time resolution of
OA measurements requiring long sample collection times. Application of these meth-
ods should be considered as a good alternative or complement to other methods of
achieving high time resolution, such as instrument redesign for rapid sample collec-10

tion, which in many cases may be prohibitively expensive.
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Table 1. Modeling parameters.

Parameter Description Value(s)

∆τ (h) Sample collection or measurement integration time 4, 6, 8
δτ (h) Staggering interval 1
T (h) Period of time series being measured 12, 19, 38, 57, 76, 114, 228
κm (% of mass) Relative measurement error 0, 1, 5, 10, 20, 30
σ0, m (µg) Fixed or blank measurement error 0.5
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Figure 1. (a) Time series of HOA (dark gray) and OOA (green) concentrations measured at
the T0 site in Mexico City during the MILAGRO field campaign (Aiken et al., 2009). Blue and
orange circle markers indicate the daily HOA and OOA peaks, respectively, used for the peak
reproduction analysis (Sect. 4). (b) Diurnally averaged HOA and OOA concentrations.
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Figure 2. Sampling strategies and post-processing methods for increasing time resolution.
Each method is explained in detail in the main text in Sect. 3. Step: step function, linear: linear
function, TSVD: TSVD regularization, Tikh.: Tikhonov regularization, full: no loss of the bound-
ary values corresponding to partial measurement samples, trunc: loss of all boundary values
corresponding to partial measurement samples, uni: truncated signal uniformly padded to the
length of the full, smeared signal, ref: truncated signal reflectively padded to the length of the
full, smeared signal.
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Figure 3. An illustrative example of interpolation between sequential samples. An original
time series f of HOA concentrations, and the time series resulting from step (red) and linear
(yellow) interpolation between successive sequential samples, which are indicated by the circle
markers.
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Figure 4. An original time series f of period T = 12 h measured with 4 h samples (∆τ = 4 h)
staggered at intervals of 1 h (δτ = 1 h). The resulting smeared signal g is the full convolution
product of f and a convolution matrix H(∆τ,δτ). Since f contains 12 data points, g contains
15 (= 12+ (4/1)−1) data points. The values at the boundaries of g correspond to partial aver-
ages of f (samples with sampling time <∆τ). In practice these values are often not accessible
to measurement, and one is left with a truncated measurement vector gt consisting of only
8 (= 15−2(4−0.5)) data points. The truncated measurement vector can be padded on its edges
by the uniform (guni) or reflective (gref) methods so that is has the same number of elements as
the full convolution product g.
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Figure 5. Explanation of different types of time series: f is an original time series of HOA con-
centrations; g are smeared time series produced from the staggering of 4 h samples (∆τ = 4 h)
at 1 h intervals (δτ = 1 h) (a) without (κm = 0 %) and (c) with the addition of normally-distributed
random measurement error (κm = 20 %). The right panels contain time series f̂ recovered by
deconvolution of the smeared time series g in the corresponding left panels. When κm = 0 %
(b), the true time series can be completely recovered by deconvolution. No regularization is
required. When κm = 20 %, (d) TSVD regularization with appropriate choice of k (= 23), or (e)
Tikhonov regularization with appropriate choice of λ (= 0.39) are required to obtain solutions
that approximate the true time series well.
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Figure 6. (a–f) Mean Recovery error (RE) as a function of the start time of the second sample
of the day for HOA and OOA time series constructed by step and linear interpolation between
sequential measurements of length (∆τ) 4, 6, and 8 h. κm = 20 % and T = 57 h, meaning each
data point is an average over 4 (= 228/57) time series segments. The start time of the second
sample of the day represents the 4, 6, and 8 unique sequential sampling schedules that are
possible with 4, 6, and 8 h samples, respectively (Sect. 4). The vertical bars represent 95 %
confidence intervals determined by bootstrapping the mean estimates. (g) Maximum ∆RE vs.
∆τ. Maximum ∆RE represents the maximum difference in RE between two unique sampling
schedules for a given ∆τ. It is the maximum possible potential error that may be incurred if
a suboptimal sampling schedule is chosen for a given type of time series.
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Figure 7. Mean Recovery error (RE) for different boundary value methods for HOA and OOA
time series constructed by deconvolution with TSVD and Tikhonov regularization of staggered
measurements of length (∆τ) 4, 6, and 8 h. κm = 20 % and T = 57 h, meaning each data point
is an average over 4 (= 228/57) time series segments. The boundary value methods are full;
trunc, truncated; unipad, uniformly padded; and refpad, reflectively padded. The vertical bars
represent 95 % confidence intervals determined by bootstrapping the mean estimates.
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Figure 8. Peak plots for time series of period 57 h measured with 4 h samples subject to 20 %
measurement uncertainty recovered by each of the eight combinations of regularization (TSVD,
Tikhonov) and boundary value (full, trunc: truncated, unipad: uniformly padded, refpad: reflec-
tively padded) methods. The peak plots are explained fully in the main text in Sect. 4. Briefly,
∆[HOA or OOA] concentration represents the mean difference in daily peak concentrations and
∆t the mean difference in daily peak timing between a calculated, hourly-resolved time series
and its corresponding true time series. The vertical and horizontal bars represent 1 standard
deviation of the ∆[HOA or OOA] concentration and ∆t results, respectively, for each daily peak
in all of the modeled solutions.
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Figure 9. The number of filter samples N of length 4, 6, and 8 h required to measure time
series of period T hours sequentially and by staggering the samples at an interval δτ of 1 h.
The number of sequential samples is given by T/∆τ and the number of staggered samples is
given by (T −∆τ +1)/δτ.
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Figure 10. Mean Recovery error (RE) against relative measurement error for HOA and
OOA time series processed by the sequential, smeared and recovered methods. T = 57 h
and ∆τ = 4 h. The “sequential high” and “sequential low” time series are constructed by lin-
ear interpolation between suboptimally- and optimally-scheduled sequential measurements,
respectively. The recovered solutions were obtained with TSVD regularization and the trun-
cated boundary method.
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Figure 11. Peak plots for time series of period 57 h measured with 4 h samples subject to 20 %
measurement uncertainty processed by the sequential, smeared and recovered methods. The
“sequential high” and “sequential low” time series are constructed by linear interpolation be-
tween suboptimally- and optimally-scheduled sequential measurements, respectively. The re-
covered solutions were obtained with TSVD regularization and the truncated boundary method.
The peak plots are explained fully in the main text in Sect. 4.
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Figure 12. Mean Recovery error (RE) against sample collection time for HOA and OOA time
series processed by the sequential, smeared and recovered methods. T = 57 h and κm = 20 %.
The “sequential high” and “sequential low” time series are constructed by linear interpola-
tion between suboptimally- and optimally-scheduled sequential measurements, respectively.
The recovered solutions were obtained with TSVD regularization and the truncated boundary
method.
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Figure 13. Left panels: upsampling error (UE) vs. κm for HOA and OOA time series (T = 57 h)
measured with 4 h samples. Right panels: the corresponding UE fractions of the total error (RE)
as a function of κm.
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