Skip to main content
Log in

Formation of Amorphous Structures and Their Crystallization in the Cu–Ti System by High-Energy Ball Milling

  • THEORY AND PROCESSES OF FORMING AND SINTERING OF POWDER MATERIALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The results of the investigation into the formation of amorphous structures in the Cu–Ti system and their subsequent crystallization under the effect of high-energy ball milling (HEBM) are presented. To form amorphous Cu–Ti powders, powders of copper (MPS-V grade with average particle size d = 45–100 μm, GOST (State Standard) 4960–75) and titanium (PM99.95, d = 2.0–4.5 μm, TU (Technical Specifications) 48-19-316–80) are selected as the initial components. The HEBM of Cu + Ti powder mixtures is performed using an Aktivator-2S laboratory planetary ball mill (at revolution rates of discs of 694 rpm and drums of 1388 rpm) for 1–30 min. The investigations into the surface morphology and micro-, nano-, and atomic crystalline structure of activated Cu + Ti powder mixtures are fulfilled by X-ray structural analysis (XSA) using a DRON-3M diffractometer, scanning electron microscopy using a Zeiss Ultra+ microscope (Germany) with the application of energy dispersive analysis, and high-resolution transmission electron microscopy (TEM) using a Titan microscope (United States). The determination of thermal characteristics of phase transformations (temperature, heat of reaction, and amorphous-to-crystalline transition) are performed by differential scanning calorimetry using a DSC 204 F1 device in the mode of linear heating to 450°C at a rate of 20 K/min. The Cu–Ti amorphous powders were fabricated using HEBM for 20 min. The XSA data evidence that the fraction of the amorphous phase in the material was 93%. The TEM investigations showed that the material preferentially consists of the amorphous phase with an insignificant content of nanocrystalline regions 2–8 nm in size. It is found that the Cu–Ti amorphous phase crystallizes in a temperature range of 336–369°C, and the heat of reaction is 79.78 J/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Willens, R.H., Klement, W., and Duwez, P., Continuous series of metastable solid solutions in silver-copper alloys, J. Appl. Phys., 1960, vol. 31, pp. 1136–1137.

    Google Scholar 

  2. Sudzuki, K., Hudzumori, H., and Hasimoto, K., Amorfnye metally (Amorphous Metals), Moscow: Metallurgiya, 1987.

  3. Davidson, M., Roberts, S., Castro, G., Dillon, R.P., Kunz, A., Kozachkov, H., Demetriou, M.D., Johnson, W.L., Nutt, S., and Hofmann, D.C., Investigating amorphous metal composite architectures as spacecraft shielding, Adv. Eng. Mater., 2013, vol. 15, nos. 1–2, pp. 27–33.

  4. Johnson, W.L., Bulk metallic glasses—a new engineering material, Met. Alloys, 1996, vol. 1, pp. 383–386.

    Google Scholar 

  5. Zolotukhin, I.V., Amorphous metallic materials, Soros. Obraz. Zh., 1997, no. 4, pp. 73–78.

  6. Pozdnyakov, V.A., Fizicheskoe materialovedenie nanostrukturirovannykh materialov (Physical Materials Science of Nanostructured Materials), Moscow: MGIU, 2007.

  7. Brunelli, K., Dabala, M., Frattini, R., Sandona, G., and Calliari, I., Electrochemical behaviour of Cu–Zr and Cu–Ti glassy alloys, J. Alloys Compd., 2001, nos. 317–318, pp. 595–602.

  8. Pineda, E., Bruna, P., Ruta, B., Gonzalez-Silveira, M., and Crespo, D., Relaxation of rapidly quenched metallic glasses: Effect of the relaxation state on the slow low temperature dynamics, Acta Mater., 2013, vol. 61, pp. 3002–3011.

    Article  Google Scholar 

  9. Kobayashi, A., Yano, S., Kimura, H., and Inoue, A., Fe-based metallic glass coatings produced by smart plasma spraying process, Mater. Sci. Eng. B, 2008, vol. 148, nos. 1–3, pp. 110–113.

  10. Marikani, A., Engineering Physics, New Delhi: Ray, 2013, 2nd ed.

  11. Shekhar, K.M. and Nageswar, S., Electrodeposition of copper on Cu–Zr metallic glass substrates, J. Appl. Electrochem., 1988, vol. 18, no. 2, pp. 200–204.

    Article  Google Scholar 

  12. Blanquet, E., Mantoux, A., Pons, M., and Vahlas, C., Chemical vapor deposition and atomic layer deposition of amorphous and nanocrystalline metallic coatings: towards deposition of multimetallic films, J. Alloys Compd., 2010, vol. 504, pp. 422–424.

    Article  Google Scholar 

  13. Sun, H. and Flores, K.M., Laser deposition of a Cu-based metallic glass powder on a Zr-based glass substrate, J. Mater. Res., 2008, vol. 23, no. 10, pp. 2692–2703.

    Article  Google Scholar 

  14. Koch, C., Cavin, O.B., McKamey, C.G., and Scarbrough, J.O., Preparation of amorphous Ni60Nb40 by mechanical alloying, Appl. Phys. Lett., 1983, vol. 43, pp. 1017–1019.

    Article  Google Scholar 

  15. Politis, C., Nanostructured and amorphous materials by mechanical alloying, Chin. Phys., 2001, vol. 10, pp. 31–35.

    Article  Google Scholar 

  16. Shkodich, N.F., Rogachev, A.S., Vadchenko, S.G., Moskovskikh, D.O., Sachkova, N.V., Rouvimov, S., and Mukasyan, A.S., Bulk Cu-Cr nanocomposites by high-energy ball milling and spark plasma sintering, J. Alloys Compd., 2014, vol. 617, pp. 39–46.

    Article  Google Scholar 

  17. Pourfereidouni, A. and Akbari, G.H., Development of nanostructure Cu–Ti alloys by mechanical alloying process, Adv. Mater. Res., 2014, vol. 829, pp. 168–172.

    Article  Google Scholar 

  18. Politis, C. and Johnson, W.L., Preparation of amorphous TiCux (0.10 < x < 0.87) by mechanical alloying, Appl. Phys., 1986, vol. 60, no. 3, pp. 1147–1151.

    Article  Google Scholar 

  19. Molnar, A., Domokos, L., Katona, T., Martinek, T., Mulas, G., Cocco, G., Bertoti, I., and Szepvolgyi, J., Activation of amorphous Cu–M (M–Ti, Zr, or Hf) alloy powders made by mechanical alloying, Mater. Sci. Eng., 1997, nos. 226–228, pp. 1074–1078.

  20. Savin, V.V. and Chaika, V.A., Formation of amorphous powders of alloys of the Cu–Ti system with mechanical activation of powder mixtures, Powder Metall. Met. Ceram., 1998, vol. 37, no. 7, pp. 448–457.

    Article  Google Scholar 

  21. Guwer, A., Nowosielski, R., Borowski, A., and Babilas, R., Fabrication of copper–titanium powders prepared by mechanical alloying, Indian J. Eng. Mater. Sci., 2014, vol. 21, pp. 265–271.

    Google Scholar 

  22. Hirooka, Y., Thermal decomposition of titanium hydride and its application to low pressure hydrogen control, J. Vacuum Sci. Technol. A, 1984, vol. 2, pp. 16–21.

    Article  Google Scholar 

  23. Lehmhus, D. and Rauch, G., Tailoring titanium hydride decomposition kinetics de annealing in various atmospheres, Adv. Eng. Mater., 2004, vol. 6, no. 5, pp. 313–330.

    Article  Google Scholar 

  24. Duan, G., Wiest, A., Lind, M.L., Kahl, A., and Johnson, W.L., Lightweight Ti-based bulk metallic glasses excluding late transition metals, Scripta Mater., 2008, vol. 58, pp. 465–468.

    Article  Google Scholar 

  25. Baricco, M., Battezzati, L., Soletta, I., Schiffini, L., and Cowlam, N., Thermal behavior of Cu–Ti and Cu–Ti–H amorphous powders prepared by ball milling, Mater. Sci. Eng. A, 1991, vol. 134, pp. 1398–1401.

    Article  Google Scholar 

  26. Rogachev, A.S., Shkodich, N.F., Vadchenko, S.G., Baras, F., Kovalev, D.Yu., Rouvimov, S., Nepapushev, A.A., and Mukasyan, A.S., Influence of the high energy ball milling on structure and reactivity of the Ni + Al powder mixture, J. Alloys Compd., 2013, vol. 577, pp. 600–605.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.S. Shchukin for photographs of the Cu–Ti microstructure recorded using a scanning electron microscope and presented at our disposal.

This study was supported by the Russian Scientific Foundation, agreement on the grant representation no. 16-13-10431.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. F. Shkodich, A. S. Rogachev, S. G. Vadchenko, I. D. Kovalev, A. A. Nepapushev, S. S. Rouvimov or A. S. Mukasyan.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkodich, N.F., Rogachev, A.S., Vadchenko, S.G. et al. Formation of Amorphous Structures and Their Crystallization in the Cu–Ti System by High-Energy Ball Milling. Russ. J. Non-ferrous Metals 59, 543–549 (2018). https://doi.org/10.3103/S1067821218050176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218050176

Navigation