Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2014

Valorisation of bio-oil resulting from fast pyrolysis of wood

  • Paul Vanderauwera EMAIL logo and Dorine Wambeke
From the journal Chemical Papers

Abstract

Bio-oil resulting from the pyrolysis of lignocellulose is a complex mixture of polar low molecular mass oxygenated compounds of various functionalities and non-polar high molecular mass lignin derivatives. Several approaches to the upgrading of bio-oil are currently in progress. This study investigates the valorisation of crude bio-oil using physical and chemical methods. The effects of methanol addition on some properties of the bio-oil are investigated. Stable bio-oil/diesel oil emulsions are produced by the addition of surfactants with a hydrophilic-lipophilic balance value of 5–6. An alternative approach towards the upgrading of bio-oil is the hydrotreatment of the water-soluble fraction of bio-oil. Two-stage hydroprocessing with noble-metal catalysts Ru/C and Pt/C increases the intrinsic hydrogen content of the water-soluble fraction. The results show that the thermally unstable components including sugars, ketones and aldehydes are readily converted to diols and alcohols at pressures of 5 MPa. These observations can be explained by a set of reaction pathways for the compounds identified.

[1] Adjaye, J. D., & Bakhshi, N. N. (1995a). Catalytic conversion of a biomass-derived oil to fuels and chemicals I: Model compound studies and reaction pathways. Biomass and Bioenergy, 8, 131–149. DOI: 10.1016/0961-9534(95)00018-3. http://dx.doi.org/10.1016/0961-9534(95)00018-310.1016/0961-9534(95)00018-3Search in Google Scholar

[2] Adjaye, J. D., & Bakhshi, N. N. (1995b). Catalytic conversion of a biomass-derived oil to fuels and chemicals II: Chemical kinetics, parameter estimation and model predictions. Biomass and Bioenergy, 8, 265–277. DOI: 10.1016/0961-9534(95)00019-4. http://dx.doi.org/10.1016/0961-9534(95)00019-410.1016/0961-9534(95)00019-4Search in Google Scholar

[3] American Society for Testing and Materials (2008). Standard test method for water using Karl Fischer titration. E203-08. West Conshocken, PA, USA. DOI: 10.1520/e0203-08. 10.1520/E0203-08Search in Google Scholar

[4] American Society for Testing and Materials (2012). Standard test method for kinematic viscosity of transparent and opaque liquids. D445-12. West Conshocken, PA, USA. DOI: 10.1520/d0445-12. 10.1520/D0445-12Search in Google Scholar

[5] Bridgwater, A., Czernik, S., Diebold, J., Meier, D., Oasmaa, A., Peacocke, C., Piskorz, J., & Radlein, D. (1999). Fast pyrolysis of biomass: a handbook. Thatcham, UK: CPL Press. Search in Google Scholar

[6] Bridgwater, A. V., & Peacocke, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4, 1–73. DOI: 10.1016/s1364-0321(99)00007-6. http://dx.doi.org/10.1016/S1364-0321(99)00007-610.1016/S1364-0321(99)00007-6Search in Google Scholar

[7] Chiaramonti, D., Bonini, M., Fratini, E., Tondi, G., Gartner, K., Bridgwater, A. V., Grimm, H. P., Soldaini, I., Webster, A., & Baglioni, P. (2003). Development of emulsions from biomass pyrolysis liquids and diesel and their use in engines-Part 1: emulsion production. Biomass and Bioenergy, 25, 85–99. DOI: 10.1016/s0961-9534(02)00183-6. http://dx.doi.org/10.1016/S0961-9534(02)00183-610.1016/S0961-9534(02)00183-6Search in Google Scholar

[8] Czernik, S., Johnson, D. K., & Black, S. (1994). Stability of wood fast pyrolysis oil. Biomass and Bioenergy, 7, 187–192. DOI: 10.1016/0961-9534(94)00058-2. http://dx.doi.org/10.1016/0961-9534(94)00058-210.1016/0961-9534(94)00058-2Search in Google Scholar

[9] Davda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D., & Dumesic, J. A. (2003). Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts. Applied Catalysis B: Environmental, 43, 13–26. DOI: 10.1016/s0926-3373(02)00277-1. http://dx.doi.org/10.1016/S0926-3373(02)00277-110.1016/S0926-3373(02)00277-1Search in Google Scholar

[10] Demirbas, A. (2004). Current technologies for thermo-conversion of biomass into fuels and chemicals. Energy Sources, 26, 715–730. DOI: 10.1080/00908310490445562. http://dx.doi.org/10.1080/0090831049044556210.1080/00908310490445562Search in Google Scholar

[11] Diebold, J. P., & Czernik, S. (1997). Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy & Fuels, 11, 1081–1091. DOI: 10.1021/ef9700339. http://dx.doi.org/10.1021/ef970033910.1021/ef9700339Search in Google Scholar

[12] Elliot, D. C. (2007). Historical developments in hydroprocessing bio-oils. Energy & Fuels, 21, 1792–1815. DOI: 10.1021/ef070044u. http://dx.doi.org/10.1021/ef070044u10.1021/ef070044uSearch in Google Scholar

[13] Elliot, D. C., Hart, T. R., Neuenschwander, G. G., Rotness, L. J., & Zacher, A. H. (2009). Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. Environmental Progress & Sustainable Energy, 28, 441–449. DOI: 10.1002/ep.10384. http://dx.doi.org/10.1002/ep.1038410.1002/ep.10384Search in Google Scholar

[14] Furimsky, E. (2013). Hydroprocessing challenges in biofuel production. Catalysis Today, 217, 13–56. DOI: 10.1016/j.cattod.2012.11.008. http://dx.doi.org/10.1016/j.cattod.2012.11.00810.1016/j.cattod.2012.11.008Search in Google Scholar

[15] Huber, G. W., Cortright, R. D., & Dumesic, J. A. (2004). Renewable alkanes by aqueous-phase reforming of biomassderived oxygenates. Angewandte Chemie International Edition, 43, 1549–1551. DOI: 10.1002/anie.200353050. http://dx.doi.org/10.1002/anie.20035305010.1002/anie.200353050Search in Google Scholar PubMed

[16] Ikura, M., Mirmiran, S., Sawatzky, H., & Stanciulescu, M. (1998). U.S. Patent No. 5820640 A. Washington, D.C., USA: U.S. Patent and Trademark Office. Search in Google Scholar

[17] Oasmaa, A., & Kuoppala, E. (2003). Fast pyrolysis of forestry residue. 3. Storage stability of liquid fuel. Energy & Fuels, 17, 1075–1084. DOI: 10.1021/ef030011o. http://dx.doi.org/10.1021/ef030011o10.1021/ef030011oSearch in Google Scholar

[18] Oasmaa, A., & Peacocke, C. (2010). Properties and fuel use of biomass-derived fast pyrolysis liquids. Vuorimiehentie, Finland: VTT. Search in Google Scholar

[19] Oasmaa, A., Kuoppala, E., Ardiyanti, A., Venderbosch, R. H., & Heeres, H. J. (2010). Characterization of hydrotreated fast pyrolysis liquids. Energy & Fuels, 24, 5264–5272. DOI: 10.1021/ef100573q. http://dx.doi.org/10.1021/ef100573q10.1021/ef100573qSearch in Google Scholar

[20] Lu, Q., Yang, X. L., & Zhu, X. F. (2008). Analysis on chemical and physical properties of bio-oil pyrolized from rice husk. Journal of Analytical and Applied Pyrolysis, 82, 191–198. DOI: 10.1016/j.jaap.2008.03.003. http://dx.doi.org/10.1016/j.jaap.2008.03.00310.1016/j.jaap.2008.03.003Search in Google Scholar

[21] Venderbosch, R. H., & Prins, W. (2010). Fast pyrolysis technology development. Biofuels, Bioproducts and Biorefining, 4, 178–208. DOI: 10.1002/bbb.205. http://dx.doi.org/10.1002/bbb.20510.1002/bbb.205Search in Google Scholar

[22] Vispute, T. P., Zhang, H. Y., Sanna, A., Xiao, R., & Huber, G. W. (2010). Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science, 330, 1222–1227. DOI: 10.1126/science.1194218. http://dx.doi.org/10.1126/science.119421810.1126/science.1194218Search in Google Scholar PubMed

[23] Wildschut, J., Arentz, J., Rasrendra, C. B., Venderbosch, R. H., & Heeres, H. J. (2009). Catalytic hydrotreatment of fast pyrolysis oil: Model studies on reaction pathways for the carbohydrate fraction. Environmental Progress & Sustainable Energy, 28, 450–460. DOI: 10.1002/ep.10390. http://dx.doi.org/10.1002/ep.1039010.1002/ep.10390Search in Google Scholar

Published Online: 2014-5-23
Published in Print: 2014-9-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-014-0541-y/html
Scroll to top button