Skip to main content
Log in

Investigations into the regulation and function of the SH2 domain-containing protein-tyrosine phosphatase, SHP-1

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Our laboratory is interested in identifying genes relevant to diseases. Our approach is to use spontaneous mouse mutants with immunological defects and decipher the molecular basis of the phenotypes. In the early 1990s, our attention was focused on the motheaten and viable motheaten mouse mutants. We used these mutant mice as a model system for elucidating the genetic and cellular events contributing to expression of normal hematopoietic and immune function. Our initial goal was to identify the gene responsible for the motheaten and viable motheaten phenotype. In 1993, we and others reported that both motheaten and viable motheaten mice have mutations in the SHP-1 gene. Currently, there are more than 600 publications involving SHP-1. In this review, rather than summarizing all these studies, we highlight work involving SHP-1 that were/are carried out in our and our collaborators' laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsui HW, Siminovitch KA, de Souza L, Tsui FWL: Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nature Genet 1993;4:124–129.

    Article  PubMed  CAS  Google Scholar 

  2. Shultz LD, Schweitzer PA, Rajan TV, et al: Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 1993;73:1445–1454.

    Article  PubMed  CAS  Google Scholar 

  3. Green MC, Shultz LD: Motheaten, an immunodeficient mutant of the mouse. J Hered 1975;66:250–258.

    PubMed  CAS  Google Scholar 

  4. Sidman CL, Shultz LD, Unanue ER: The mouse mutant “motheaten”. I. Development of lymphocyte populations. J Immunol 1978;121:2392–2398.

    PubMed  CAS  Google Scholar 

  5. Shultz LD, Coman DR, Bailey CL, Beamer WG, Sidman CL: “Viable motheaten,” a new allele at the motheaten locus. I. Pathology. Am J Pathol 1984;116:179–192.

    PubMed  CAS  Google Scholar 

  6. Greiner DL, Goldschneides I, Komschlies KL, Medlock ES, Bollum FJ, Schultz L: Defective lymphopoiesis in the bone marrow of motheaten (me/me) and viable motheaten (mev/mev) mutant mice. I. Analysis of the development of prothymocytes, B lineage cells and terminal deoxynucleotidyl-transferase-positive cells. J Exp Med 1986;164:1129–1144.

    Article  PubMed  CAS  Google Scholar 

  7. Davidson WF, Morse HC, Sharrow SD, Chused TM: Phenotypic and functional effects of the motheaten gene on murine B and T lymphocytes. J Immunol 1979;122: 884–891.

    PubMed  CAS  Google Scholar 

  8. Sidman CL, Shultz LD, Unanue ER: The mouse mutant “motheaten.” II. Functional studies of the immune system. J Immunol 1978;121:2399–2404.

    PubMed  CAS  Google Scholar 

  9. Sidman CL, Shultz LD, Hardy R, Hayakawa K, Herzenberg LA: Production of immunoglobulin isotypes by Ly-1+B dells in viable motheaten and normal mice. Science 1986;232:1423–1425.

    Article  PubMed  CAS  Google Scholar 

  10. Sherris DI, Sidman CL: Distinction of B cell maturation factors from lymphokines affecting B cell growth and viability. J Immunol 1986;136:994–998.

    PubMed  CAS  Google Scholar 

  11. Koo GC, Manyak CL, Dasch J, Ellingsworth L, Shultz LD: Suppressive effects of monocytic cells and TGF-beta on NK differentiation in autoimmune viable motheaten mutant mice. J Immunol 1991;147:1194–1200.

    PubMed  CAS  Google Scholar 

  12. Yi T, Cleveland JL, Ihle JN: Protein tyrosine phosphatase containing SH2 domains. Characterization, preferential expression in hematopoietic cells, and localiztion to human chromosome 12p12-p13. Mol Cell Biol 1992;12:836–846.

    PubMed  CAS  Google Scholar 

  13. Kozlowski M, Mlinaric-Rascan J, Feng G-S, Shen R, Pawson T, Siminovitch KA: Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice. J Exp Med 1993;178:2157–2163.

    Article  PubMed  CAS  Google Scholar 

  14. Jiao H, Yang W, Berrada K, Tabrizi M, Shultz L, Li T: Macrophages from motheaten and viable motheaten mutant mice show increased proliferative responses to GM-CSF: detection of potential JCP substrates in GM-CSF signal transduction. Exp Hematol 1997;25:592–600.

    PubMed  CAS  Google Scholar 

  15. Tapley P, Shevde NK, Schweitzer PA, et al: Increased G-CSF responsiveness of bone marrow cells from hematopoietic cell phosphatase deficient viable motheaten mice. Exp Hematol 1997;25:122–131.

    PubMed  CAS  Google Scholar 

  16. Van Zant G, Shultz L: Hematologic abnormalities of the immunodeficient mouse mutant, viable motheaten (mev). Exp Hematol 1989;17:81–87.

    PubMed  Google Scholar 

  17. Klingmuller U, Lorenz U, Cantley LC, Neel BG, Lodish HF. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 1995;80:729–738.

    Article  PubMed  CAS  Google Scholar 

  18. Yu CCK, Tsui HW, Ngan BY, Shulman MJ, Wu GE, Tsui FWL: B and T cells are not required for the viable motheaten phenotype. J Exp Med 1996;183:371–380.

    Article  PubMed  CAS  Google Scholar 

  19. Cornall RJ, Cyster JG, Hibbs ML, et al: Polygenic autoimmune traits: Lyn, CD22 and SHP-1 are limiting elements of a biochemical pathway regulating BCR signalling and selection. Immunity 1998;8:497–508.

    Article  PubMed  CAS  Google Scholar 

  20. Nicholas R, Paling D, Welham MJ: Tyrosine phosphatase SHP-1 acts at different stages of development to regulate hematopoiesis. Blood 2005;105:4290–4297.

    Article  Google Scholar 

  21. Hara TK, Sakuma Y, Sakai S, Nagata M, Aoki F: Dynamic changes in the expression of protein tyrosine phosphatases during preimplantation mouse development: semiquantification by real-time PCR. J Reprod Dev 2003;49:323–328.

    Article  PubMed  CAS  Google Scholar 

  22. Banville D, Stocco R, Shen SH: Human protein tyrosine phosphatase 1C (PTPN6) gene structure: alternate promoter usage and exon skipping generate multiple transcripts. Genomics 1995;27:165–173.

    Article  PubMed  CAS  Google Scholar 

  23. Martin A, Tsui HW, Shulman MJ, Isenman D, Tsui FWL: Murine SHP-1 splice variants with altered src homology 2 (SH2) domains: implications for the SH2-mediated intramolecular regulation of SHP-1. J Biol Chem 1999;274:21725–21734.

    Article  PubMed  CAS  Google Scholar 

  24. Tsui HW, Hasselblatt K, Martin A, Mok SC, Tsui FWL: Molecular mechanisms underlying SHP-1 gene expression. Eur J Biochem 2002;269:3057–3064.

    Article  PubMed  CAS  Google Scholar 

  25. Xu Y, Banville D, Zhao H-F, Zhao X, Shen S-F: Transcriptional activity of the SHP-1 gene in MCF7 cells is differentially regulated by binding of NF-Y factor to two distinct CCAAT-elements. Gene 2001;169: 141–153.

    Article  Google Scholar 

  26. Cragg G, Kellie S: A functional nuclear localization sequence in the C-terminal domain of SHP-1. J Biol Chem 2001;276:23719–32725.

    Article  Google Scholar 

  27. Ram PA, Waxman DJ: Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase. J Biol Chem 1997;272:17694–17702.

    Article  PubMed  CAS  Google Scholar 

  28. Martin A, Tsui HW, Tsui FWL: SHP-1 variant proteins are absent in motheaten mice despite presence of splice variant transcripts with open reading frames. Mol Immunol 1999;36:1029–1041.

    Article  PubMed  CAS  Google Scholar 

  29. Poe JC, Fujimoto Y, Hasegawa M, et al: CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nat Immunol 2004;5:1078–1087.

    Article  PubMed  CAS  Google Scholar 

  30. Renaudineau Y, Pers JO, Bendaoud B, Jamin C, Youinou P: Dysfunctional B cells in systemic lupus erythrmatosus. Autoimmun Rev 2004;3:516–523.

    Article  PubMed  CAS  Google Scholar 

  31. Baba T, Fusaki N, Aoyama A, et al: Dual regulation of BCR-mediated growth inhibition signalling by CD72. Eur J Immunol 2005;35:1634–1642.

    Article  PubMed  CAS  Google Scholar 

  32. Okazawa H, Motegi S, Ohyama N, et al: Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J Immunol 2005;174:2004–2011.

    PubMed  CAS  Google Scholar 

  33. Sweeney MC, Wavreille A-S, Park J, Butchar JP, Tridandapani S, Pie D: Decoding protein-protein interactions through combinatorial chemistry: sequence specificity of SHP-1, SHP-2 and SHIP SH2 domains. Biochemistry 2005;44:14932–14947.

    Article  PubMed  CAS  Google Scholar 

  34. Carlyle JR, Martin A, Mehra A, Attisano L, Tsui FW, Zuniga-Pflucker JC: Mouse NKR-P1B, a novel NK1.1. antigen with inhibitory function. J Immunol 1999;162: 5917–5923.

    PubMed  CAS  Google Scholar 

  35. Ljutic B, Carlyle JR, Filipp D, Nakagawa R, Julius M, Zuniga-Pflucker JC: Functional requirements for signalling through the stimulatory and inhibitory mouse NKR-P1 (CD161) NK cell receptors. J Immunol 2005;174:4789–4796.

    PubMed  CAS  Google Scholar 

  36. Cayabyab FS, Schlichter LC: Regulation of an ERG K+ current by Src tyrosine kinase. J Biol Chem 2002;277: 13673–13681.

    Article  PubMed  CAS  Google Scholar 

  37. Horvat A, Schwaiger F, Hager G, et al: A novel role for protein tyrosine phosphatase shp1 in controlling glial activation in the normal and injured nervous system. J Neurosci 2001;21:865–874.

    PubMed  CAS  Google Scholar 

  38. Chen HE, Chang S, Trub T, Neel BG: Regulation of colony-stimulating factor 1 receptor signalling by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol 1996;16:3685–3697.

    PubMed  CAS  Google Scholar 

  39. Fedoroff S, Berezovskaya O, Maysinger D: Role of colony stimulating factor-1 in brain damage caused by ischemia. Neurosci Biobehav Rev 1997;21:187–191.

    Article  PubMed  CAS  Google Scholar 

  40. Wischcamper CA, Coffin JD, Lurie DI: Lack of the protein tyrosine phosphatase SHP-1 results in decreased numbers of glia within the motheaten (me/me) mouse brain. J Comp Neurol 2001;441:118–133.

    Article  Google Scholar 

  41. Cayabyab FS, Tsui FWL, Schlichter LC: Modulation of the ERG K+ current by the tyrosine phosphatase, SHP-1. J Biol Chem 2002;277:48130–48138.

    Article  PubMed  CAS  Google Scholar 

  42. Chim CS, Wong AS, Kwong YL: Epigenetic dysregulation of the Jak/STAT pathway by frequent aberrant methylation of SHP1 but not SOCS1 in acute leukaemias. Ann Hematol 2004;83:527–532.

    Article  PubMed  CAS  Google Scholar 

  43. Chim CS, Fung TK, Cheung WC, Liang R, Kwong YL: SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood 2004;103:4630–4635.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang Q, Wang HY, Marzec M, Raghunath PN, Nagasawa T, Wasik MA: STAT3-and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc Natl Acad Sci USA 2005;102:6948–6953.

    Article  PubMed  CAS  Google Scholar 

  45. Zapata PD, Ropero RM, Valencia AM, et al: Autocrine regulation of human prostate carcinoma cell proliferation by somatostatin through the modulation of the SH2 domain containing protein tyrosine phosphatase (SHP)-1. J Clin Endocrinol Matab 2002;87:915–926.

    Article  CAS  Google Scholar 

  46. Mok SC, Kwok TT, Berkowitz RS, Barrett AJ, Tsui FW: Overexpression of the protein tyrosine phosphatase, non-receptor type 6 (PTPN6) in human epithelial ovarian cancer. Gynecol Oncol 1995;57:299–303.

    Article  PubMed  CAS  Google Scholar 

  47. Yip T, Crew AJ, Gee JM, et al: Up-regulation of the protein tyrosine phosphatase SHP-1 in human breast cancer and correlation with GRB2 expression. Int J Cancer 2000;88:363–368.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence W. L. Tsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsui, F.W.L., Martin, A., Wang, J. et al. Investigations into the regulation and function of the SH2 domain-containing protein-tyrosine phosphatase, SHP-1. Immunol Res 35, 127–136 (2006). https://doi.org/10.1385/IR:35:1:127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:35:1:127

Key Words

Navigation