Skip to main content
Log in

Nanotube field and one-dimensional fluctuations of C60 molecules in carbon nanotubes

  • Mesoscopic Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

C60 molecules encapsulated in carbon nanotubes interact by van der Waals forces with the tube walls. The nanotube field leads to orientational confinement of the C60 molecules which depends on the nanotube radius. In small tubes with radius RT≤7 Å a fivefold symmetry axis of the molecule coincides with the tube axis, the center of mass of the molecule being located on the tube axis. The interaction between C60 molecules encapsulated in the nanotube is then described by a O2-rotor model on a one-dimensional (1-d) liquid chain with coupling between orientational and displacive degrees of freedom but no long-range order. This coupling leads to a temperature-dependent chain contraction. The structure factor of the 1-d liquid is derived. In tubes with larger radius the molecular centers of mass are displaced off the tube axis. The distinction of two groups of peapods with on- and off-axis molecules suggests an explanation of the apparent splitting of Ag modes of C60 in nanotubes measured by resonant Raman scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S. Iijima, Nature (London) 354, 56 (1991)

    Article  ADS  Google Scholar 

  • T.W. Ebbesen, P.M. Ajayan, Nature (London) 358, 220 (1992)

    Article  ADS  Google Scholar 

  • R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

  • P.J.F. Harris, Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge, 1999)

  • J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Chem. Commun., 1319 (2002)

  • B.W. Smith, M. Monthioux, D.E. Luzzi, Nature (London) 396, 323 (1998)

    Google Scholar 

  • D.J. Hornbaker, S.J. Kahng, S. Misra, B.W. Smith, A.T. Johnson, E.J. Mele, D.E. Luzzi, A. Yazdani, Science 295, 829 (2002)

    Article  ADS  Google Scholar 

  • B.W. Smith, M. Monthioux, D.E. Luzzi, Chem. Phys. Lett. 315, 31 (1999)

    Article  Google Scholar 

  • K. Hirahara, S. Bandow, K. Suenaga, H. Kato, T. Okazaki, H. Shinohara, S. Iijima, Phys. Rev. B 64, 115420 (2001)

    Article  ADS  Google Scholar 

  • I.D. Brown, Cutforth B.D., C.G. Davies, R.J. Gillespi, P.R. Ireland, J.E. Vekris, Can. J. Chem. 52, 791 (1974)

    Google Scholar 

  • V.J. Emery, J.D. Axe, Phys. Rev. Lett. 40, 1507 (1978)

    Article  ADS  Google Scholar 

  • P.A. Albouy, J.P. Pouget, H. Strzelecka, Phys. Rev. B 35, 173 (1987)

    Article  ADS  Google Scholar 

  • S. Okada, M. Otani, A. Oshiyama, Phys. Rev. B 67, 205411 (2003)

    Article  ADS  Google Scholar 

  • M. Hodak, L.A. Girifalco, Phys. Rev. B 68, 085405 (2003)

    Article  ADS  Google Scholar 

  • R. Pfeiffer, H. Kuzmany, T. Pichler, H. Kataura, Y. Achiba, M. Melle-Franco, F. Zerbetto, Phys. Rev. B 69, 035404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • L. Kavan, L. Dunsch, H. Kataura, Chem. Phys. Lett. 361, 79 (2002)

    Article  Google Scholar 

  • M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, 1996)

  • B. Verberck, K.H. Michel, unpublished

  • H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, Nature (London) 318, 162 (1985)

    Article  ADS  Google Scholar 

  • M. Sprik, A. Cheng, M.L. Klein, J. Phys. Chem. 96, 2027 (1992)

    Article  Google Scholar 

  • J.R.D. Copley, K.H. Michel, J. Phys.: Condens. Matter 5, 4353 (1993); D. Lamoen, K.H. Michel, Z. Phys. B 92, 323 (1993)

    Article  ADS  Google Scholar 

  • S. Okada, S. Saito, A. Oshiyama, Phys. Rev. Lett. 86, 3835 (2001); A. Rochefort, Phys. Rev. B 67, 115401 (2003)

    Article  ADS  Google Scholar 

  • B. Verberck, K.H. Michel, A.V. Nikolaev, J. Chem. Phys. 116, 10462 (2002)

    Article  ADS  Google Scholar 

  • C.J. Bradley, A.P. Cracknell, The Mathematical Theory of Symmetry in Solids (Clarendon, Oxford, 1972)

  • H.M. James, T.A. Keenan, J. Chem. Phys. 31, 12 (1959)

    Google Scholar 

  • M. Yvinec, R.M. Pick, J. Phys. France 41, 1045 (1980)

    Google Scholar 

  • K.H. Michel, K. Parlinski, Phys. Rev. B 31, 1823 (1985)

    Article  ADS  Google Scholar 

  • Gerardus Mercator (1512–1594), Flemish cartographer, inventor of the cylindrical projection

  • A. Trave, F.J. Ribeiro, S.G. Louie, M.L. Cohen, Phys. Rev. B 70, 205418 (2004)

    Article  ADS  Google Scholar 

  • T. Pichler, H. Kuzmany, H. Kataura, Y. Achiba, Phys. Rev. Lett. 87, 267401 (2001)

    Article  ADS  Google Scholar 

  • See e.g. L.D. Landau und E.M. Lifschitz, Lehrbuch der Theoretischen Physik IX, Statistische Physik, Teil 2, Kapitel VIII, p. 335 (Akademie-Verlag Berlin, 1984)

  • P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995), Chapter 6

  • B. Burteaux, A. Claye, B.W. Smith, M. Monthioux, D.E. Luzzi, J.E. Fischer, Chem. Phys. Lett. 310, 21 (1999)

    Article  Google Scholar 

  • D. Lamoen, K.H. Michel, Phys. Rev. B 48, 807 (1993)

    Article  ADS  Google Scholar 

  • W.I.F. David, R.M. Ibberson, T.J.S. Dennis, J.P. Hare, K. Prassides, Europhys. Lett. 18, 219 (1992); W.I.F. David, R.M. Ibberson, T.J.S. Dennis, J.P. Hare, K. Prassides, Europhys. Lett. 18, 735 (addendum)

    ADS  Google Scholar 

  • P.A. Heiney, G.B.M. Vaughan, J.E. Fischer, N. Coustel, D.E. Cox, J.R.D. Copley, D.A. Neumann, W.A. Kamitakahara, K.M. Creegan, D.M. Cox, J.P. McCauley, Jr., A.B. Smith III, Phys. Rev. B 45, 4544 (1992)

    Article  ADS  Google Scholar 

  • H. Wagner, Phys. Rev. Lett. 25, 31 (1970)

    ADS  Google Scholar 

  • N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  ADS  Google Scholar 

  • R.A. Jishi, M.S. Dresselhaus, G. Dresselhaus, Phys. Rev. B 47, 16671 (1993)

    Article  ADS  Google Scholar 

  • M. Hodak, L.A. Girifalco, Phys. Rev. B 67, 075419 (2003); A. Khlobystov, D.A. Britz, A. Ardavan, G.A.D. Briggs, Phys. Rev. Lett. 92, 245507 (2004)

    Article  ADS  Google Scholar 

  • K.S. Troche, V.R. Coluci, S.F. Braga, D.D. Chinellato, F. Sato, S.B. Legoas, R. Rurali, D.S. Galvao, Nano Lett. 5, 349 (2005)

    Article  Google Scholar 

  • H.E. Stanley, Phase Transitions and Critical Phenomena (Clarendon, Oxford, 1971)

  • R. Spal, C.E. Chen, T. Egami, P.J. Nigrey, A.J. Heeger, Phys. Rev. B 21, 3110 (1980)

    Article  ADS  Google Scholar 

  • J. Cambedouzou, S. Rols, R. Almairac, J.L. Sauvajol, H. Kataura, H. Schober, Phys. Rev. B 71, 041403(R) (2005)

    Article  ADS  Google Scholar 

  • J. Cambedouzou, V. Pichot, S. Rols, P. Launois, P. Petit, R. Klement, H. Kataura, R. Almairac, Eur. Phys. J. B 42, 31 (2004)

    Article  ADS  Google Scholar 

  • S. Amelinckx, A. Lucas, P. Lambin, Rep. Progr. Phys. 62, 1471 (1999)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Verberck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, K., Verberck, B. & Nikolaev, A. Nanotube field and one-dimensional fluctuations of C60 molecules in carbon nanotubes. Eur. Phys. J. B 48, 113–124 (2005). https://doi.org/10.1140/epjb/e2005-00378-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00378-9

Keywords

Navigation